
Efficient Algorithms for Factorization and Join
of Blades

Daniel Fontijne

Abstract Subspaces are powerful tools for modeling geometry. In geometric alge-
bra, they are represented using blades and constructed using the outer product. To
produce the actual geometrical intersection (Meet) and union (Join) of subspaces,
rather than the simplified linearizations often used in Grassmann-Cayley algebra,
requires efficient algorithms when blades are represented as a sum of basis blades.
We present an efficient blade factorization algorithm, and use it to produce imple-
mentations of the Join which are are 5 to 10 times faster than earlier algorithms.

1 Introduction

In geometric algebra implementations, blades are commonly represented as weighted
sums of orthogonal basis blades, which we call the additive representation [5]. This
allows for straightforward and efficient implementation of many linear operations
and products, but complicates implementing true subspace union (join) and intersec-
tion (meet), which are non-linear products [4]. If a factored (or multiplicative) blade
representation were used, standard linear algebra techniques like Gram-Schmidt or
the SVD an be used to implement the join efficiently and with ease [5]. But to imple-
ment the join of blades in additive representation, factorization of one of the input
blades into vectors seems to be required.

In this paper, we present a new blade factorization algorithm and new algorithms
for computing the join. The algorithms are improvements of previous work [1, 4, 7].
Our main contributions are the FastFactorization algorithm which factors blades by
simply rearranging coordinates, and the StableFastJoin algorithm which computes
the join in a numerically stable way at little additional cost compared to the FastJoin
algorithm.

Daniel Fontijne
University of Amsterdam, Kruislaan 403, 1098 SJ, the Netherlands,
e-mail: fontijne@science.uva.nl

1

2 Daniel Fontijne

We do not consider computing the meet (either directly or simultaneously along
with the join) as suggested by [7]. Experimentation [6] showed that adjusting our
FastJoin algorithm to compute the meet directly is somewhat slower than comput-
ing it from the join using A∩B = (Bc(A∪B)−1)cA [4], and also leads to more
generated code. We assume a Euclidean metric in all computations, as both factor-
ization and join are metric independent operations [2]. Throughout the paper, n is
the dimension of the vector space V n and k is used to denote the grade of the blade
in the current context.

2 New Algorithm for Blade Factorization

The problem of factorizing a blade is the following. Given a k-blade B (in the addi-
tive representation), find k vectors bi such that B = b1∧b2∧ . . .∧bk, where for rea-
sons of numerical stability we prefer the factors bi to be ‘sufficiently non-parallel’.

To find factors, one may project ‘probing vectors’ pi onto the blade. In geometric
algebra, this is done by the projection operator qi = (picB−1)cB [3, 4]. If qi is not
zero, it is a factor of B. By finding k linearly independent vectors qi a factorization
of B has been found (up to scale). A straightforward choice for the probing vectors
pi are basis vectors ei. To obtain the factorization one selects a total of k indepen-
dent projected vectors qi. This is the essence of the outer factorization algorithm
presented in detail in [4], based on ideas in [1], which we improve upon below.

If we are only looking for factors, we are more interested in the fact that the
final result qi is in B than in it being the precise projection of the original probing
vector pi. But this ‘being in B’ is already guaranteed by the second contraction in
the projection equation. In our fast outer factorization algorithm, we save on the
first contraction by using the orthogonal complement of the probing vector pi with
respect to the largest basis blade in B. The whole operation then becomes merely the
selection of appropriate coordinates. We turn this idea into an algorithm as follows:

Algorithm FastFactorization(B):

Let B be a k-blade, with 1 < k < n (to exclude trivial cases). The algo-
rithm computes a factorization B = β b1∧b2∧ . . .∧bk, where β is a scalar:

1. Find the basis blade F = f1∧ f2∧ . . .∧ fk to which the absolute largest coor-
dinate of B refers. The fi are basis vectors. Let β be the coordinate that refers
to F.

2. Compute Bs = B/β .
3. For each fi compute: bi = (ficF−1)cBs.

The independency of the vectors bi guarantees that they form a factorization of Bs.
Theorem: The factors bi as computed by the FastFactorization algorithm are lin-
early independent.

Proof: Bs is represented as sum of grade k basis blades E j: Bs = ∑
(n

k)
j=1

β j
β

E j.

Efficient Algorithms for Factorization and Join of Blades 3

Through distributivity, each bi = ∑
(n

k)
j=1

β j
β

(ficF−1)cE j. Let us analyze the contri-
bution of each E j to each bi:

• If E j is equal to F, then (ficF−1)cE j = fi.
• Else if E j is orthogonal to F we find (ficF−1)cE j = 0.
• Else E j = σ j(ficF−1)∧ e j, for some basis vector e j, where the sign σ j = ±1

depends on the order of basis vectors in E j. This e j cannot be equal to fi, for then
E j is equal to F, and also e j can also not be any of the other basis vectors in F,
for then E j would be 0 as it would contain the same basis vector twice. Thus in
this case

(ficF−1)cE j = (ficF−1)c(σ j(ficF−1)∧ e j) = (ficF−1)2
σ j e j =±σ je j,

where e j is not a factor of F.

Thus each bi equals

bi = fi + ∑
e j∧F 6=0

(±σ j)
β j

β
e j,

so that it does not contain any other factor of F than fi itself. Since the fi are linearly
independent, so are the bi. �

Even though the factors are linearly independent, they are not orthogonal in gen-
eral. For an estimation of how non-orthogonal the factors can be in the worst case,
let us assume that the B is placed so skewly relative to the basis that it has an equal
weight for each basis blade (it is not guaranteed that such an element B is indeed a
blade). For a unit blade B, this gives as worst case:

B =
1√(n

k

) (n
k)

∑
j=1
±E j, so Bs =

(n
k)

∑
j=1
±E j.

For such an element Bs, the largest possible absolute value of an inner product be-
tween a pair of factors is the number of nonzero coordinates:

‖bi ·b j‖ ≤ n− k,

and the largest absolute value of an inner product between a pair of normalized
factors is

‖unit(bi) ·unit(b j)‖ ≤
n− k

n− k +1
.

This last equation shows that the factorization method could be less usable in for ex-
ample 10-D space (e.g., if k = 5,n = 10, then ‖unit(bi) ·unit(b j)‖ ≤ 5

6) than it is in
for example 3-D space, because the factors are potentially less and less orthogonal
as the dimension of space n increases. But in such spaces a factorized blade repre-
sentation becomes more attractive than the additive representation [5] and issues of
efficient factorization of blades in the additive representation are then less crucial.

4 Daniel Fontijne

3 Algorithms for Computing the Join of Blades

Given the FastFactorization algorithm of the previous section, it is straightforward
to formulate fast algorithms for the join based on [4, 7]. Given two blades A and B,
the following algorithm computes the join J = A∪B. A small constant threshold
value ε is required.

Algorithm FastJoin(A,B,ε):

1. Filter out trivial cases:

• If A and/or B is zero, return J = 0.
• Else if A is of grade 0, return J = unit(B).
• Else if B is of grade 0, return J = unit(A).
• Else if A and/or B is of grade n, return J = In.
• Otherwise continue with step 2.

2. If required, swap A and B such that grade(A) ≥ grade(B). If the swap is
applied, remember the ‘swapping-sign’ σ = (−1)grade(A)grade(B), otherwise
set σ = 1. The swap is for reasons of efficiency.

3. Set J← unit(A).
4. Find the largest basis blade term F in B.
5. While grade(J) 6= n and not all basis vectors fi in F have been tried:

a. Take any basis vector fi in F which has not been tried yet.
b. Compute bi = (ficF−1)cB.
c. Compute H = J∧unit(bi).
d. If (‖H‖ ≥ ε) set J← unit(H).

6. Return σ J.

The implementation of this algorithm can be made very efficient by generating op-
timized code for each combination of arguments in steps 5b and 5c, see Section 4.

3.1 Grade Stability and Numerical Stability

The main loop of the algorithm just tries to increase the grade of the current J by
taking the outer product with factors of B in step 5c, and accepts the result if its norm
is above some threshold value ε . This leads to a problem in stability of the grade
of result: the factorization of B is dependent on the basis, and hence so is the grade
of J as computed by the algorithm. In some application this may be acceptable, but
in general one would prefer the grade of the computed join to be independent of
the choice of basis. If we could somehow compute the required grade of the join J
in advance, we could use this knowledge to guide the FastJoin algorithm. For this
purpose, we use the following equation [4]:

Efficient Algorithms for Factorization and Join of Blades 5

grade(A∪B) =
grade(A)+grade(B)+grade(A∆B)

2
, (1)

The delta product ∆ (geometric symmetric difference) [2] can be computed as the
highest grade part of the geometric product AB which is nonzero. It can be deter-
mined efficiently through lazy evaluation [6]. Let us call the function which com-
putes the grade of the delta product FastDeltaGrade(A,B,δ) where δ is a again a
small threshold. We use it to improve our FastJoin algorithm as follows:

Algorithm StableFastJoin(A,B,ε,δ):

Start with steps 1-5 of FastJoin(A,B,ε).
6. If (grade(J) = n) or (grade(J) = grade(A)+ grade(B)), return σJ. (σ was

computed in step 2 of the FastJoin algorithm.) Otherwise:
7. Compute grade(A∪B) using Equation (1).
8. While (grade(J) < grade(A∪B))

a. For all valid i, compute bi = (ficF−1)cB.
Set bm to that bi which leads to the largest ‖J∧bi‖.

b. Update J← J∧bm.

9. Return σJ.

Note that one should set ε ≥ δ , or else in step 7 blade J may already have a grade
which is larger than the grade required by FastDeltaGrade(A,B,δ). Also note that
in step 8a it makes no sense to try bi which were already accepted in step 5d or in
an earlier iteration of step 8a.

Another issue in the FastJoin algorithm is numerical stability due to the use float-
ing point values which causes round off errors. The main thing we can do to ensure
numerical stability of the StableFastJoin algorithm is to choose ‘good’ factors bi in
step 5c of the algorithms. Each factor bi potentially extending the current iteration
value of the join J can be written as a sum bi = b‖i +b⊥i where b‖i is parallel to the
current J, and b⊥i is orthogonal to it. If ‖b‖i ‖ � ‖b⊥i ‖ it is likely that the floating
point precision of the outer product J∧bi is low. Hence we would prefer to select
those bi which result in the largest ‖J∧bi‖ because that bi is most orthogonal to the
current J.

One solution is trying every remaining bi in every loop and use the one which
results in the largest norm, but this is inefficient. Fortunately, it is trivial to adjust the
StableFastJoin algorithm to be more precise, with only a minimal performance im-
pact by running step 1 through 5 (its FastJoin part) using a relatively large threshold
like ε = 10−2. This means that in step 5d,we only accept factors which are reason-
ably orthogonal to J. When the input blades are in a non-degenerate configuration,
the computed J will have the required grade (as verified by step 6 or 7). Otherwise,
we find the best factors in step 8. This step is more expensive, but it rarely needs to
execute.

6 Daniel Fontijne

4 Implementation

To implement the FastFactorization and the FastJoin algorithms we have written
a code generator on top of the Gaigen 2 code generation framework [5]. The
code generator generates a C++ implementation of the algorithms for a specific
n and for a specific order and orientation of the basis elements. We used a code
generator because our implementation approach leads to relatively large amounts of
code which is rather tedious and error prone to write by hand.

Implementation of the Fast Factorization Algorithm

The essential optimization of our implementation of the FastFactorization algorithm
is to generate a function for each possible largest basis blade F of the input blade B.
These functions implement the actual factorization and they are called via a lookup
table. Figure 1 shows an example of such a function. It is clearly visible that the
function just copies (and possibly negates) coordinates of the input blade to the coor-
dinates of a factor. In the order of ∑k

(n
k

)
= 2n of these functions are generated, each

with code size proportional to k n, for a total code size of O(∑k nk
(n

k

)
) = O(n2 2n−1).

In total, the implementation of the FastFactorization algorithm amounts to filter-
ing out special cases, finding largest basis blade F, and jumping to the corresponding
factorization function via the lookup table.

void factorE234grade3(const float *B, float **b) {
 b[2][0] = B[0]; b[1][0] = -B[1]; b[0][0] = B[2];
 b[0][1] = b[1][2] = b[2][3] = B[3];
 b[2][4] = B[6]; b[1][4] = -B[8]; b[0][4] = B[9];
 b[0][2] = b[0][3] = b[1][1] = b[1][3] = b[2][1] = b[2][2] = 0.0f;
}

Fig. 1 Example of a generated factorization function which computes the factors bi of a normal-
ized blade B. This function implements the core of the FastFactorization algorithm for n = 5, k = 3
and F = e2∧ e3∧ e4.

Implementation of the Join Algorithms

The generated implementation of the join algorithms closely follows their descrip-
tion in Section 3. The most significant optimization is the main loop of the algo-
rithms: the implementation combines the factorization of step 5b with the outer
product of step 5c. This allows it to take advantage of the zero coordinates which are
in the factors due to the FastFactorization algorithm. One factor-and-outer-product
function is generated for each valid combination of ficF and grade(J) in steps 5b,c
of the algorithm. These functions are again called via a lookup table. There are in the
order of O(∑ j ∑k

(n
k

)
) = O(n2n) of these functions, each with code size proportional

to n
(n

j

)
, for a total code size of O(∑ j ∑k

(n
k

)
n
(n

j

)
) = O(n22n).

Efficient Algorithms for Factorization and Join of Blades 7

4.1 Benchmarks

We performed our benchmarks on a 1.83 GHz Core2 Duo notebook, using a single
thread (i.e., one CPU). The programs were compiled with Visual C++ 2005, using
standard optimization settings. 32 bit floating point arithmetic was used.

We ran benchmarks for 3 ≤ n ≤ 6. Above 6-D, our particular implementation
starts to make less sense because the amount of generated code becomes too large
(one may then switch to a conventional hand-written implementation which will be
somewhat less efficient, see the discussion in Section 5). Besides giving absolute
values, such as the number of factorizations that can be performed per second, we
also list benchmarks relative to outer product of vector and 2-blade. This gives a fair
impression of how expensive a factorization is relative to a straightforward bilinear
product.

Factorization Benchmarks
To benchmark the FastFactorization(A,B) algorithm we generated a number of ran-
dom blades of random grades. The grades of the blades were uniformly distributed
over the range [0, n]. A random k-blade was generated by computing the outer prod-
uct of k random vectors. A random vector was generated by setting the n coordinates
of the vector to random values, uniformly distributed in the range [−1,1]. The fol-
lowing table shows the results relative to the outer product and in absolute values
(M = million).

n 3 4 5 6
relative to outer product 5.1× 5.1× 3.4× 3.8×

factorizations per second 15M 9.2M 5.2M 2.8M

Join Benchmarks
To benchmark the FastJoin and StableFastJoin algorithms we generated pairs of
random blades A and B using the same method as described for the factorization
benchmark. The grades of the blades A and B were uniformly distributed over the
range [0, n]. However, the pairs of random blades were generated such that they
shared a common factor. The grade of the common factor was uniformly distributed
over the range [0, min{grade(A),grade(B)}].

We benchmarked both the FastJoin algorithm (ε = 10−6) and the StableFastJoin
algorithm (ε = 10−2, δ = 10−6). The table below shows both absolute and rela-
tive (to the outer product) benchmarks. We also show relative figures for computing
the Gram-Schmidt orthogonalization of the factors of each pair of random blades.
For this we retain the factors that generated the blades, perform a standard Gram-
Schmidt orthogonalization, and discard the dependent factors (using the same ε

threshold as for the join). This algorithm was implemented using the same principles
(i.e., optimizing and unrolling the inner loop of the algorithm) as the FastJoin algo-
rithm. Hence the last row should give an impression of how expensive the FastJoin
algorithms are compared to a classical linear algebra approach for computing a min-
imal basis set which spans a subspace union.

8 Daniel Fontijne

n 3 4 5 6
FastJoin (relative) 9.8× 8.7× 5.8× 6.4×

FastJoin (absolute) 7.4M 5.4M 3.1M 1.8M
StableFastJoin (relative) 9.8× 9.1× 7.0× 6.8×
StableFastJoin (absolute) 7.4M 5.2M 2.6M 1.6M
Gram-Schmidt (relative) 12× 12× 7.9× 8.0×

Code Size
The table below lists the size of the generated code for our factorization and join

implementation. The code size grows in approximate agreement with the theoret-
ical complexities of O(n22n−1) and O(n22n), respectively. We state ‘approximate’
because for low dimensional spaces the constant code size of the algorithm (which is
included in the figures) can be relatively large compared to the amount of generated
code, especially for the factorization algorithm.

n 3 4 5 6 7
FastFactorization 3.74kB 5.85kB 11.4kB 25.8kB 62.1kB

FastJoin 14.7kB 26.4kB 75.9kB 321kB 1.47MB

5 Discussion

FastFactorization Algorithm

Our benchmarks show that the FastFactorization algorithm is in the order of 5 times
slower than a regular outer product in the same space. The time complexity of the
FastFactorization algorithm is O(

(n
n/2

)
) = O(n−1/22n) (using the Stirling approxi-

mation of factorials) due to the step which finds the largest coordinate of the input
blade. The fact that this step uses conditional statements makes it extra expensive on
modern pipelined processors. The outer product of a vector and a 2-blade relative
to which we presented the benchmarks has a time complexity of O(n3), and uses no
conditional statements (an outer product of arbitrary blades has a time complexity
around O(2n)). The benchmarks suggest that the FastFactorization algorithm be-
comes less expensive compared to the outer product as the n becomes larger, but
if one plots

(n
n/2

)
/n3 for 1 ≤ n ≤ 20 it becomes clear that n = 6 is in fact the turn-

ing point beyond which the FastFactorization should become exceedingly expensive
relative to the outer product. So our figure of five times slower is only valid for the
limited range of n for which we benchmarked.

It is rather remarkable (but understandable) that in general the FastFactorization
algorithm does not use all coordinates of the input blade once it has found which
coordinate is the largest one: the k factors of a k-blade have k n coordinates, which
in many cases is less than the

(n
k

)
coordinates of the blade in additive representation.

The code size of the generated implementation is acceptable (less than 100kB) up
to 7-D, but extrapolation of the figures suggests that a 10-D implementation would
about 1MB in size. This is confirmed by the theoretical figure that code size should

Efficient Algorithms for Factorization and Join of Blades 9

be in the order of O(n2 2n−1). Thus in high-dimensional spaces we recommend using
a more conventional implementation approach (our initial implementation of the
FastFactorization algorithm was implemented without using code generation and
was about two times slower than the generated implementation).

The FastFactorization algorithm is a useful building block for other algorithms.
In this paper we used it for computing the join. Another useful application may be a
fast ‘blade manifold projection’ function which projects a non-blade onto the blade
manifold in Grassmann space (the elements satisfying the Plücker relations). This
may be implemented by naively ‘factoring’ the non-blade, and using the factors thus
obtained to compute a valid blade as their outer product.

Fast Join Algorithm

Our benchmarks show that our implementation of the FastJoin algorithms is slightly
faster than an implementation of Gram-Schmidt orthogonalization applied to the
factors of the input blades. This is quite remarkable, as it means that – even if the
only geometry you need is computing the join – you may be better off using the
basis-of-blades representation rather than a factorized representation in terms of
basis sets (at least for such low-dimensional spaces).

To make sure the grade of the join which is computed by our FastJoin algorithm
is independent of the (arbitrary) basis, use of the delta product is required, invoking
some additional computational cost. However, the delta product needs to be invoked
only when the algorithm cannot determine that it has computed a join of the right
grade. As a result, the cost of the StableFastJoin (which uses the delta product) is
only about 10% higher than that of the straightforward FastJoin algorithm.

The time complexity of the FastJoin algorithms is O(n2
(n

n/2

)
) = O(n3/22n), as we

need to compute in the order of n outer product of vectors with blades (in step 5c),
and each of these outer products has a time complexity of order n

(n
n/2

)
. This means

that the cost FastJoin algorithm relative to a vector-2-blade outer product should
increase right from n = 3. The fact that the benchmarks do not entirely agree with
this is likely due to the decreasing relative cost of the overhead (filtering out special
cases, and such) as n increases.

We implemented our join algorithms using code generation. Starting around 7-D,
this no longer tractable. The generated code for 6-D is 0.32MB, while the code for
7-D is 1.47MB in size; generating and compiling the 7-D code took several minutes.
The size of the code is in the order of n22n. Hence for n≥ 7 we recommend using a
more conventional implementation which does not explicitly spell out the functions
used in the inner loop for all possible arguments.

6 Conclusion

We have shown that the outer factorization of a k-blade in V n that is represented as a
sum of basis k-blades is (computationally) a trivial operation. It amounts to copying

10 Daniel Fontijne

and possibly negating selected coordinates of the input blade into the appropriate
elements of the factors. Implemented as such and using code generation, factoriza-
tion is only about five times slower than an outer product in the same algebra in
the low-dimensional spaces. The O(n−1/22n) time complexity of the factorization
algorithm is determined by the number of coordinates of the input k-blade, which
becomes exceedingly large in high-dimensional spaces.

The join and meet of blades are relatively expensive products, due to their non-
linearity. However, when efficiently implemented through our FastJoin algorithm,
the cost of the join and meet is only in the order of 10 times that of an outer product
in the same algebra, compared to 100 times in previous research [4]. Again, these
figures are valid only for low dimensional spaces. The O(n3/22n) time complexity
makes clear that in high-dimensional spaces, one should use a multiplicative presen-
tation of blades [5] and use classic linear algebra algorithms like the SVD (which
has O(n3) time complexity) to implement the join. Our StableFastJoin algorithm,
which takes grade stability and numerical stability into account, is just 10% slower
than the FastJoin algorithm.

These speeds are obtained at the expense of generating efficient code that spells
out the operations for certain combinations of the basis blades and grades in the
arguments. While efficient, this is only truly possible for rather low-dimensional
spaces, since the amount of code scales as O(n2 2n−1) for FastFactorization and
O(n22n) for the FastJoin algorithm.

References

1. Bouma, T: Projection and Factorization in Geometric Algebra. Unpublished paper. (2001)
2. Bouma, T and Dorst, L and Pijls, H: Geometric Algebra for Subspace Operations. Acta Math-

ematicae Applicandae. 73, 285–300 (2002)
3. Dorst, L.: The Inner Products of Geometric Algebra. In: Dorst, L. , Doran, C., Lasenby, J.

(eds.) Applications of Geometric Algebra in Computer Science and Engineering, pp. 35-46.
Birkhäuser, Boston (2002)

4. Dorst, L. and Fontijne, D. and Mann, S.: Geometric Algebra for Computer Science: An Object
Oriented Approach to Geometry. Morgan Kaufmann, San Francisco (2007)

5. Fontijne, D. Efficient Implementation of Geometric Algebra (PhD. thesis). University of Am-
sterdam (2007).

6. Fontijne, D and Dorst, L.: Efficient Algorithm for Meet and Join of Subspaces. Submitted to
International Journal of Computational Geometry and Applications (2007).

7. Bell, I: private communication. 2004-2005.

