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Planes are the primitive elements for the constructions of objects and oper-
ators in Euclidean geometry. Triangulated meshes are built from them, and
reflections in multiple planes are a mathematically pure way to construct
Euclidean motions.

A geometric algebra based on planes is therefore a natural choice to unify
objects and operators for Euclidean geometry. The usual claims of ‘com-
pleteness’ of the GA approach leads us to hope that it might contain, in a
single framework, all representations ever designed for Euclidean geometry -
including normal vectors, directions as points at infinity, Plücker coordinates
for lines, quaternions as 3D rotations around the origin, and dual quaternions
for rigid body motions; and even spinors.

This text provides a guided tour to this algebra of planes PGA. It indeed
shows how all such computationally efficient methods are incorporated and
related. We will see how the PGA elements naturally group into blocks of
four coordinates in an implementation, and how this more complete under-
standing of the embedding suggests some handy choices to avoid extraneous
computations. In the unified PGA framework, one never switches between
efficient representations for subtasks, and this obviously saves any time spent
on data conversions.

Relative to other treatments of PGA, this text is rather light on the
mathematics. Where you see careful derivations, they involve the aspects of
orientation and magnitude. These features have been neglected by authors
focussing on the mathematical beauty of the projective nature of the algebra.
But since orientation and magnitude are very relevant for practical usage,
we must incorporate them into the framework.
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I started this text as a replacement for Chapter 11 of the 2007 book ‘Ge-
ometric Algebra for Computer Science’, written at a time when PGA was
underappreciated. At 100 pages, it has become rather more; but I do assume
some familiarity with the standard geometric algebra of the chapters that
came before. Even if you are totally new to GA, you will still get the main
gist of the power of PGA, and that may motivate you to study the basics of
general GA. Welcome to the future!

Please refer to this chapter as:

Leo Dorst
A Guided Tour to the Plane-Based Geometric Algebra PGA
2020, version 1.15
Available at http://www.geometricalgebra.net
and http://bivector.net/PGA4CS.html.
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1 A Minimal Algebra for Euclidean Motions

1.1 PGA: One More Dimension Suffices

While the 3D vector space model R3 (of Chapter 10 in [1]) can nicely model
directions, it is considered to be inadequate for use in 3D computer graph-
ics. The reason is primarily a desire to treat points and vectors as different
objects; after all, they are transformed differently by translations. Instead,
graphics uses an extension of linear algebra known as ‘homogeneous coordi-
nates’, which is often described as augmenting a 3-dimensional vector v with
coordinates (v1, v2, v3)

> to a 4-vector (v1, v2, v3, 1)>. This extension helps to
discriminate point location vectors from direction vectors, and makes non-
linear operations such as translations and projective transformations imple-
mentable as linear mappings.

This ‘homogeneous model’ can be described in terms of a geometric alge-
bra of one more dimension, with an explicit extra basis vector. That is how
we did it in the first edition of our book [1], in its Chapter 11. Then we went
on to show the shortcomings of this model: for while translations become
linear, they do not become rotors. That means that the great advantage of
geometric algebra, namely ‘structure preservation of universally applicable
operators’, fails in this model. We then went on to Conformal Geometric
Algebra (CGA), turning translations into rotors by going up 2 dimensions
(rather than just 1 as in the homogeneous model) in our representational
space. That worked as desired.

The conformal model is indeed useful, and its inclusion of spheres and cir-
cles as primitives truly makes it feel like a natural Euclidean geometry. But
as has been remarked many times, we get too much: going up 2 dimensions
in this manner actually lands us in a space in which the rotors are conformal
transformations, rather than merely the Euclidean motions we were looking
for. Viewing the 3D rigid body motions with their six degrees of freedom
(dof) as special rotors in a space that allows 10-dof rotors gives implementa-
tional and computational issues. It works, but one would have hoped to do
Euclidean geometry of flat offset elements like lines and planes with less.

And indeed, one can. Parallel to the development of CGA, Charles Gunn
proposed that an algebra that he denoted R∗3,0,1 could have the rigid body
motions precisely as its rotors, and that it should be the natural algebra for
Euclidean geometry. Its useful structure had earlier been exposed by Selig [2]
as the Clifford algebra of points, lines and planes. Gunn called it PGA, for
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Projective Geometric Algebra. That name is somewhat unfortunate, since it
suggests to me that it is the algebra that can generate projective transfor-
mations by rotors; whereas in fact the ‘projective’ refers to the homogeneous
representation it acts on. However, as we will see, PGA is the geometric alge-
bra of (hyper)planes; so if we read PGA as ‘Plane-Based Geometric Algebra’,
the moniker is fine.1

To represent translations as rotors, one needs null vectors (i.e., vectors
squaring to zero, which make exponentiation produce linear terms). In CGA,
there are two null vectors, and they combine to make the pseudoscalar invert-
ible. In PGA, with only one null vector, the pseudoscalar is a null blade, and
not invertible. It was the unconventional nature of duality in PGA that ham-
pered its acceptance by the GA community (which had collectively jumped
onto CGA by 2007). Rather than division by the pseudoscalar, Gunn intro-
duced a J-map between R∗d,0,1 (where the vectors represent hyperplanes) and
its dual space Rd,0,1 (where the vectors represent points). It seemed that one
needed both those spaces to make things work; and then one effectively had
the same number of basis elements as the CGA model of Rd+1,1, which dual-
izes more conveniently and has its round primitives like spheres and circles.
Anyhow, Gunn’s message was not heard. His admonition that we confused
‘duality’ and ‘polarity’ (a metric form of duality) was considered too mathe-
matically prissy, and viewed in the same vein as the unfortunate tradition of
considering ‘linear algebra without metrics’ as the fundamental representa-
tion, with metrics as an afterthought (which has made our everyday metric
applications of LA needlessly involved, since we almost always have a metric
anyway).

We will now develop PGA Rd,0,1 immediately as an algebra of planes.
When this is done from the start, there is no real need to see it as dual to
anything (just as CGA, an algebra of spheres, does not have a dual star in
its notation Rd+1,1). PGA can stand on its own, mostly.

1.2 How to Choose a Geometric Algebra?

For those who are new to geometric algebra, let me briefly summarize the
organizational principle behind the choice of a geometric algebra for a class

1I myself dissuaded Charles early on from calling it EGA, for Euclidean Geometric
Algebra, when I did not yet fully understand what it did. That might not have been a
bad name, after all. Sorry Charles...
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of geometry problems. It is: choose the smallest algebra in which your sym-
metries (the set of transformations under which your objects move) become
orthogonal transformations. The reason behind this insistence on orthogo-
nality is that geometric algebra has a particularly efficient way to represent
orthogonal transformations (as versors, aka rotors or spinors), which pro-
vides automatically covariant combinations of primitives and operators (and
that saves a lot of code). There are several routes to achieving this versor
representation.

• One can observe an important conserved quantity, such as Euclidean
distance, and choose the inner product of the representational space
accordingly. Since orthogonal transformations preserve the inner prod-
uct, they make up your invariant motions.

For Euclidean geometry, this leads to CGA (Conformal Geometric Al-
gebra), as explained in Chapters 13-16 of [1]; points are represented by
null vectors since they have zero distance to themselves. And for 3D
projective geometry it leads to R3,3, see [3], the geometric algebra of
lines.

• One can start from Cartan-Dieudonné’s theorem, which states that in
n-D space all orthogonal transformations can be made by at most n
reflections. Set up the representative space such that the reflecting
elements are its vectors.

This is the recipe that for Euclidean geometry leads to PGA, using
reflections in (hyper)planes to generate all Euclidean motions. In this
manner, one can also construct an algebra for conformal geometry, by
taking spherical inversion as one’s reflection - again, CGA results.

• A third method which has been followed starts from geometric prim-
itives in coordinate form, and basically assigns a dimension to each
coordinate, with a metric that makes the coordinate algebra come out
right. This tends to lead to high-dimensional algebras like R9,6 for
3D quadrics [4], and the versors then generate a host of superfluous
symmetries beyond the ones of interest.

I am yet to be convinced of this approach by a controlled example with
a clearly relevant set of versors.

PGA is an algebra in which the vectors represent Euclidean planes, and
it therefore describes Euclidean geometry according to the second principle
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above. In 3D, four planes are enough to encode any Euclidean motion. Thus
we expect a 4-dimensional basis for the PGA of 3D Euclidean space. We
will see how the elements that represent a quadruple reflection act exactly
as unit dual quaternions (which are currently the most sophisticated way to
encode Euclidean motions in computer graphics), and that our embedding
implements them most efficiently. As we will show, we can arrange the PGA
representation of all primitives and basic motions of 3D geometry naturally
in block of 4 coordinates which are processed identically, and thus align well
with GPU architecture (glance ahead at Table 5).

Usually, ‘projective’ or ‘homogeneous’ is interpreted as ‘modulo a scale
factor’ – a bad habit inherited from projective geometry in mathematics. If
instead we are slightly more strict and interpret our elements as ‘identical
modulo a positive scale factor’, we obtain an oriented geometry that enables
consistent encoding of the sides of planes, the propagation direction of rays,
oriented distances, etc. Doing so will refine the original presentation of PGA.
But in many instances in this text, we will also find useful geometrical mean-
ing in the value of the weighting factors themselves, often as a numerical
indication of how non-degenerate a geometric situation is (the more orthog-
onal a line intersects a plane, the more stable the intersection point is under
small perturbations, etc.).

There is more to Euclidean geometry than moving point sets around.
PGA tells us all – if we listen.

1.3 Playing with PGA

Because PGA turns out to be a subalgebra of CGA [5] (with the null vec-
tor in the extra dimension e directly corresponding to ∞), you can use
the free GAviewer software provided with [1] to visualize it. After down-
loading the library to generate the book figures (from the book website:
www.geometricalgebra.net/figures.html), just type in ‘init(2)’ as first
command to start up the CGA model (with appropriate basis vectors and
visualization). You may want to add a line ‘e = ni; ’ to allow you to use
the notation of the present text. Just never use any expressions involving the
‘no’ basis vector in their definition. That is an element of CGA which PGA
does not have, and omitting it will reduce the primitives to flat subspaces.
Since GAviewer draws such flat subspaces whether they have been specified
‘directly’ or ‘dually’ (and the latter corresponds to PGA), not only does it
compute your results, but it also draws them automatically. That is how we
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generated many of the figures in this replacement chapter.
However, that GAviewer software is 15 years old by now. You may also

use more modern computational and visualization alternatives such as the
JavaScript tool ganja.js (though currently, that does not yet indicate the
orientation of elements).
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2 Meet the Primitives of PGA

Let us first simply use Euclidean direction vectors to denote the location x
of a point relative to the origin, and define a plane with unit normal vector
n, at an oriented distance δ from the origin. The equation of this plane is

x · n = δ. (1)

The idea behind homogeneous coordinates is to rewrite this equation in terms
of an inner product for a vector x ≡ [x>, 1]> in a space of one more dimension.
Let us denote the basis vector for this extra orthogonal dimension by ε, then
x = x + ε. We could then (naively) assume a Euclidean metric in this
extended space, and represent the plane with its n and δ parameters as
[n>,−δ]>, i.e., as a vector n = n− δε. That would rewrite the equations into
the homogeneous form

x · n = 0. (2)

There is a zero on the right-hand side, so any multiple of x or n would
represent the same plane. (That is the reason behind the mathematical term
‘homogeneous’ for this representational trick.)

The Euclidean metric assumption is not really required to obtain this
functionality. One could also denote a point representative as a column
vector, and the plane representative as a row vector, and employ a matrix
product

[
n1 n2 · · · −δ

]

x1
x2
...
1

 =
[
0
]
. (3)

This is in fact a non-metric approach, with the plane being a 1-form n acting
on the 1-vector x (as a mathematician might phrase it). But of course the
concept of a normal (i.e., perpendicular) vector to characterize the direction
of a plane is convenient, so the Euclidean parts of x and n (i.e., x and n) do
feel metric. It is the extra dimension ε for the point that is really awkward
to consider as part of a Euclidean metric. For instance, one should not take
the inner product of two point representatives, which would involve a term
ε · ε that is ungeometrical. Perhaps it should be zero – but that would make
the metric no longer Euclidean.
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· e e1 e2 e3

e 0 0 0 0
e1 0 1 0 0
e2 0 0 1 0
e3 0 0 0 1

Table 1: The inner product in PGA.

2.1 PGA: Planes as Vectors

To set up PGA we focus on the representation of Euclidean planes as basic,
rather than of Euclidean points. (The reason for focusing on the representa-
tion of Euclidean planes is that we are going to represent Euclidean motions
as reflections in planes, as we stated in the introduction, and it is handy to
have our reflectors be vectors.) Given a plane with unit normal vector n at
directed distance δ from the origin (measured in the direction n, so δn is a
location on the plane), we pick as the homogeneous representative the vector

n = n + δ e. (4)

We purposely choose a positive sign for the e-term to avoid awkward signs
later. (Note that this basis vector e for the plane representation is not nec-
essarily equal to the basis vector ε in the point representation.)

To have such a hyperplane as a vector, we clearly need to set up a space of
d+1 dimensions. First there are the d Euclidean normal directions, which we
may characterize by the d basis vectors ei of an orthonormal basis. Moreover,
this basis is augmented with an extra orthogonal basis vector we denote as
e. We pick a metric for this space in which ei · ej = δij, and in which
ei · e = 0. And we choose e · e = 0, so e is a null vector. These relationships
are summarized in the inner product table (Table 1).

With this metric, the squared norm ‖n‖2 = n · n of a vector representing
a hyperplane is identical to the squared norm ‖n‖2 = n · n of its Euclidean
normal vector. Therefore a hyperplane having a unit normal vector squares
to 1.

normalized (hyper)plane : n = n + δe, with n ∈ Rd and n2 = n2 = 1. (5)

Our convention will be to denote the Euclidean elements (from the algebra
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of directions of Chapter 10 of [1]) in bold font, and elements in the (d+ 1)-
dimensional representation algebra by math italic.

The dot product between two hyperplanes also has a straightforward geo-
metric interpretation, similar to the dot product between Euclidean direction
vectors

n ·m = n ·m = ‖n‖ ‖m‖ cos(φ). (6)

So independent of their locations, the dot product of the hyperplanes provides
information on the magnitude of the mutual angle φ between their normals
(though not on its sign, which would require also knowing the value of n∧m).

Some degenerate cases of the hyperplane representation n = n + δe may
improve our understanding.

• A purely Euclidean hyperplane n = n passes through the origin. Since
the origin should have no special geometric significance, this may not
seem a sensible special case. However, hand computations and proofs
around the origin are more easily done (fewer terms!), and the trans-
lational invariance of our framework (to be introduced later) will then
make them valid anywhere.

• The purely Euclidean hyperplanes ei are the coordinate hyperplanes,
perpendicular to the corresponding coordinate directions. These have
no special geometric significance, but they will permit us to establish
relationships with more classical coordinate-based representations.

• The purely non-Euclidean (hyper)plane n = δe can be seen as a (hy-
per)plane in which the distance to the origin outweighs any directional
aspects. It is orthogonal to all Euclidean (hyper)planes: e·(n+δe) = 0;
and it cannot be normalized, since e · e = 0.

As we will see, in 3D this plane e contains all vanishing points, i.e., the
points in which parallel lines meet. The vanishing points will act as
pure directions in Euclidean space.

In projective geometry, e is called the ideal plane, or the improper
plane. Since it is made up of vanishing points, we propose calling it
the vanishing plane (in attempt to make it sound more useful and less
obscure). You can imagine it as the ‘celestial sphere’ at infinity, with
the vanishing points as its stars.
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• You have probably noticed that this is all similar to the usual homo-
geneous coordinates, where a point of the form [d>, 0]> is treated as a
direction, and [0>, δ]> as a (hyper)plane at infinity. As we will see, the
novelty of PGA lies in the combination of the planar elements, rather
than in their representation.

In almost all of the remainder of this text, we revert to the 3D terminology
of planes, lines and points for convenience of discussion. But we will occa-
sionally lift our results to d dimensions (with their hyperplanes) to display
the general results for future reference, and sometimes descend to 2D (whose
hyperplanes are lines) when the results are pleasantly simple there, or differ
in sign (for good reasons!).

2.2 Intersecting Planes: 3D Lines as 2-blades

The outer product of two planes in 3D represents the line they have in com-
mon. The basic reason behind this is the identity (e.g., from Chapter 3 of
[1])

x · (m ∧ n) = (x ·m)n− (x · n)m, (7)

which implies that a dot product with a (non-zero) 2-blade2 is zero if and
only if the dot product with each of the constituents is zero.

So if we can set up our algebra such that ‘x · n = 0’ means that ‘a
point represented by x is on a plane represented by n’, then the algebraic
inheritance relationships are just right to make the 2-blade m ∧ n be the
representative of their intersection, i.e., their common line. There is not
even a need to spell out how we do this explicitly (by specifying precisely
how we represent points) for this to be true. The inheritance property eq.(7)
of the outer product is sufficient justification. Therefore we dodge this issue
of point representation for now; we get back to it later in section 2.5. Having
planes is sufficient to define lines (and even points, as we will see).

When we use the outer product as our meet operation, we should be aware
of its somewhat unusual nature. The meet is a piecewise-linear algebraic
abstraction of the intersection operation, see Chapter 4 of [1]. Since it must
change sign as planes move from having a positive angle to a negative angle,
the meet of coincident planes is zero. It is therefore not a blade representation

2A k-blade is an element that can be written as the outer product of k vectors; it repre-
sents a k-dimensional oriented and weighted subspace of the homogeneous representational
space.
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of the actual intersection of the point sets (whereas the meet of a plane with
itself is zero, the intersection would have been the plane itself). But the
linearity properties of the meet will make it much easier to incorporate the
essence of intersection into the algebra. When the meet is zero, there is a
degeneracy among its arguments, which you can resolve in a factored-out
subspace (see Chapter 5 of [1]).

Since we plan to use the meet of planes p1∧ p2 as our line representation,
let us look at it in more detail, to confirm that it contains the relevant
characterizations of the line, in terms of direction and position.

line in planes p1 and p2 :

L = p1 ∧ p2
= (n1 + δ1e) ∧ (n2 + δ2e)

= n1 ∧ n2 + e ∧ (δ1n2 − δ2n1)

= n1 ∧ n2 + e ∧
(
(δ1n2 − δ2n1)/(n1 ∧ n2)

)
(n1 ∧ n2)

= n1 ∧ n2 + ed (n1 ∧ n2)

= (1 + ed) (n1 ∧ n2), (8)

with d = (δ1n2 − δ2n1)/(n1 ∧ n2) the support vector of the resulting line,
pointing orthogonally to a specific point on it from the origin.3

The line representation consists of two terms.

• Directional (Tangential): The first term n1 ∧ n2 is purely Euclidean,
it describes the direction of the line by specifying a Euclidean plane
n1 ∧ n2 orthogonal to its vector direction. (We will later have reason
to prefer referring to this part as the tangent aspect of the line.)

• Positional: The second term ed (n1 ∧n2) = e
(
d · (n1 ∧n2)

)
implicitly

contains the positional aspect of the line: it denotes where the line is
in space. It needs to have the tangential term n1 ∧ n2 as a factor, for
L to be a line (if not, it is a screw, see Section 5.6).

Such a directional term and positional term occur in all our elements repre-
senting offset subspaces in PGA (though they may be zero). In hindsight,

3 This particular form of d is related to reciprocal frames as d = δ1n
r
1+δ2n

r
2. We provide

a structural exercise 12.2:1, to play with this handy technique (which was explained in
Chapter 5 in [1]).

15



they also occurred in the plane n + δe, where n was the (normal) direction
and δ indicated the position.

Above, the positional aspect is by the orthogonal support vector d, permit-
ting the final multiplicative factorization in terms of the geometric product.
But any other location p of a point on the line could have been used as well.

2.3 Choosing an Orientation Convention

We have to choose how we interpret the orientation of this element repre-
senting a line, i.e., we should assign a Euclidean direction vector u to the
2-blade direction element n1 ∧ n2. At this point, there is no fundamental
reason to choose one orientation over the other, this is just choosing an in-
terface between the algebraic relations and how we choose to interpret them
geometrically. For compatibility it seems reasonable to use the analogy with
the classical 3D cross product (in a right-handed space), and set u = n1×n2;
so the meet of planes with normals e1 and e2 (in that order!) would corre-
spond to a line with direction vector u = e3. We will see later that this is
indeed a good choice, which ties in well with the difference of points defining
a direction.

With this convention, we have

u ≡ n1 × n2 = (n1 ∧ n2)
? = (n1 ∧ n2) I−13 , (9)

where I3 = e1 e2 e3 is the Euclidean volume blade (the pseudoscalar). A
general point on the line is p = d+λu. We can thus represent the line when
we have been given its direction u and some location p (not necessarily d)
as4

L = uI3 + ep · (uI3)

= uI3 + e (p ∧ u)I3

=
(
u + e (p ∧ u)

)
I3. (10)

In its components on the bivector basis {e23, e31, e12}, you recognize (plus)
the coefficients of the traditional direction vector u; and the components on
the bivector basis {ee1, ee2, ee3} are (minus) the coefficients of the traditional

4Though later, in Section 3.3.2, we will do this more naturally ‘in-algebra’ using the
join.
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moment vector (p ∧ u)? = p × u. Together, they corresponds to minus the
traditional Plücker representation of lines, which would be [−u,p× u] 5

2.4 Vanishing Lines: the meet of Parallel Planes

Effectively, the outer product p1 ∧ p2 of two plane vectors p1 and p2 acts as
the meet operation, providing intersections through the inheritance property
eq.(7). That even works for parallel planes, though the resulting line is
unusual: it contains no locational aspects, but it encodes the common normal
vector of the two planes.

line common to parallel planes p1 and p2:

L = p1 ∧ p2
= (n + δ1e) ∧ (n + δ2e)

= (δ1 − δ2) e ∧ n. (11)

The final rewriting shows that the same result can be viewed as the outer
product (intersection) of the weighted origin plane (δ1 − δ2) n and the van-
ishing plane e.

Any plane p = n + δe with the same normal n, when intersected with the
special plane e, results in an element proportional to e∧n = en. Thus ideal
2-blades represent purely directional aspects of geometry; the positional part
does not feature. In 2D PGA e ∧ n would represent the vanishing point of
parallel lines with normal direction n. So for 3D, we suggest for elements
of the form en the term vanishing line common to all parallel planes with
normal n.

2.5 3D Points as 3-blades

By the same reasoning as when we interpreted the meet of two planes as a
line due to eq.(7), the meet of three general planes in 3D should define their
common intersection point. In GA, we have the identity

x · (p1 ∧ p2 ∧ p3) = (x · p1) p2 ∧ p3 + (x · p2) p3 ∧ p1 + (x · p3) p1 ∧ p2. (12)

5This is the Shoemake convention that a line from p to q has Plücker coordinates
[p−q,p×q]. Plücker coordinates in a geometric algebra context are treated in Chapter 12
of [1]. The 3D PGA representation is equivalent to those six Plücker numbers, but on
a geometrically meaningful basis that relates it to planar intersection. Also, the PGA
representation naturally extends to lines in other dimensions besides 3.
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Thus for linearly independent plane vectors pi, a point x on all three planes
pi (so that x · pi = 0) has zero dot product with the trivector p1 ∧ p2 ∧ p3,
the meet of the planes. Therefore elements that behave like Euclidean points
are actually contained in the algebra PGA that represents planes as vectors:
they are simply the 3-blades, the outer product of three vectors. Yes you
read that right: in PGA, points are trivectors.

We would of course expect the Euclidean coordinates (and even the ho-
mogeneous coordinates) of a point to show up as the coefficients of the 3-
blade that represents it. That parametrization is most easily seen when we
construct a point at location x = x1e1 +x2e2 +x3e3 by intersecting three or-
thogonal planes pi parallel to the coordinate planes ei at the properly signed
distances xi = x · ei.

X = p1 ∧ p2 ∧ p3
= (e1 + x1e) ∧ (e2 + x2e) ∧ (e3 + x3e)

= e1 ∧ e2 ∧ e3 + e ∧ (x1 e2 ∧ e3 + x2 e3 ∧ e1 + x3 e1 ∧ e2)

= I3 + e ∧ (x · I3)
= (1 + ex) I3. (13)

If the rewriting is a bit quick for you, consult exercise 12.2:2. In the second
line, we recognize the coefficients (1, x1, x2, x3) of a (unit weight) point in
homogeneous coordinates, but on an unusual basis {e123, ee23, ee31, ee12}. It
should be clear that the unusual basis need not imply computational over-
head in coordinate-based computations. It is in a sense merely algebraic
bookkeeping of geometrical relationships with the other primitives (lines and
planes), allowing compact structural computations between them. (And that
administrative functionality is indeed a perfectly acceptable and pragmatic
computational view of geometric algebra in general.)

The ‘square’ of a point of this form, the scalar XX̃ equals6

XX̃ = (1+ex) I3 Ĩ3 (1−ex) = (1+ex) (1−ex) = 1+ex−ex+0 = 1. (14)

(We will later see that the translation-invariance of PGA elements permits

us to take the simpler approach of only computing at the origin: XX̃ =
I3 Ĩ3 = 1. Done.) The point X in eq.(13) is thus of unit weight. If we had

6The reverse X̃ of an element X is obtained by reversing all its geometric product or
outer product factors. For an element of grade X, that gives a sign of (−1)x(x−1)/2.
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intersected non-orthogonal unit planes, we would have obtained a ‘weaker’
intersection point, of less weight.

In d dimensions, a similar result to eq.(13) ensues (which you are asked
to prove in the exercise 12.2:3): X = (1 + ex) Id. Clearly the coordinates of
the usual Euclidean 1-vector x determine coordinates of the PGA d-blade
X representing it, and vice versa. This d-D form also suggests why we used
X X̃ as the ‘square’ of a point, rather than X2.

2.6 Vanishing Points

When we take the meet of a line L = p1 ∧ p2 with the special plane e at
infinity, we obtain elements of the form

V = e ∧ p1 ∧ p2
= e ∧ (n1 + eδ1) ∧ (n2 + δ2e)

= e ∧ (n1 ∧ n2). (15)

Such a point at infinity is common to all lines with directional aspect n1∧n2,
independent of their location: it is their vanishing point. If you would draw
that set of lines in perspective, V would be an actual point location in the
image. The projective nature of PGA’s representation of space means that
such vanishing points are also just elements of the algebra. But contrary to
common use in projective geometry, we will make a distinction between V
and −V ; for we do want our lines to be oriented – as light rays are.

It takes a bit of getting used to the dual indication of directions here. If
you want the vanishing point Vu lying in a Euclidean direction represented
by vector u, then you need to set V = euI3, in accordance with eq.(9).

The vanishing points can also be seen as the difference between two nor-
malized points

Q− P = (1 + eq) I3 − (1 + ep) I3 = e(q− p) I3 = euI3, (16)

with u ≡ q − p the regularly used direction vector of the line from P to
Q. Even though points are represented in PGA as 3-blades, such relation-
ships are therefore completely similar to homogeneous coordinates, where the
difference between two points is a direction vector.

We chose an interpretation of the algebraic signs in terms of geometrical
orientation in Section 2.3. At that point, it seemed arbitrary. But the con-
venience of our choice is now confirmed in eq.(16), where the difference of
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points gives us a direction trivector (vanishing point) euI3 in full correspon-
dence with the line direction convention uI3, to represent what we would
classically consider a vector in direction u.

2.7 Four Planes Speak Volumes
About Oriented Distances

We can now return to the equation that determines whether a point X lies
on a plane p. With the point represented as a trivector describing the inter-
section of three planes, this simply is the algebraic statement

p ∧X = 0. (17)

Let us verify this in computational detail to convince you.

0 = (n + δe) ∧ (I3 + ex I3)

= δeI3 − e
(
n ∧ (x I3)

)
= (δ − n · x) e I3, (18)

so indeed this retrieves the expected δ = n · x for a point with location x to
be on the line.

Contrast this with the usual homogeneous coordinate approach which we
recalled in our introduction (Section 2): ‘when a homogeneous point x lies
in a homogeneous plane n, then x · n = 0’. As we saw in the introductory
Section 2, if we want to distinguish points and planes as vectors, we have to
put them in different spaces (with ε and e as extra basis vectors, and having
e · ε = 1), or treating one of them as a vector and the other as a covector.
PGA is thus simply more frugal and algebraically (c)leaner, in its setting
up of only one (d + 1)-dimensional representational space, and then using
its outer product. (And for purists, the non-metric outer product ∧ is more
appropriate to encode an incidence relationship than the metric dot product
anyway.)

As the above computation shows, for a general plane p relative to the
point X, the 4-blade p ∧ X is not zero, but equal to a multiple δ − n · x
of the PGA pseudoscalar I ≡ e I3 = e ∧ e1 ∧ e2 ∧ e3. That multiple is
actually the orthogonal oriented distance between point and plane (if both
are normalized).
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2.8 Linear Combinations of Primitives

In classical linear algebra, we are used to having the vector equation of a
line, to generate points along it as x = q + λu. That is a convenient way to
draw a linear orbit. Such capabilities are not lost in PGA, but they take a
slightly different form.

• Sliding a point along a line:
A point is a trivector, and a direction is a vanishing point. If one has
the line 2-blade L available, then its vanishing point is eL; alternatively
a vanishing point can be constructed from a direction vector u as euI3.

One can generate a starting point lying on the line L through meeting
the line by a plane p as Q = p∧L. The ‘trivector equation of a line’ is
then

X = Q+ λ (eL). (19)

This equation can also generate trivector points parallel to L, starting
from any point Q (not necessarily on the line), as in standard LA or
homogeneous coordinates.

• Sliding a line along a plane:
In a similar way, you can slide a line L = p ∧ q linearly along a plane
p containing it

M = L+ µ (e p). (20)

But beware: this only works if e ∧ p ∧ L = 0. Geometrically, this
condition means that the line should be parallel to the plane p used
to determine the sliding. This constraint is an instance of the subtlety
that 3D lines (such as L and ep in this case) cannot be added arbitrarily
to produce another line; we will see why in Section 5.6.

• Sliding a plane along a volume:
We can also slide a plane, which is rather obvious when you realize
that in p = n + δe, the δe adds the displacement from the origin. But
in view of the above, this follows the general pattern: we can form a
family of parallel planes as

x = p+ ν (e 1). (21)

Geometrically, we could view this as adding a bit of the quantity e1,
representing the (rather trivial) positional aspect of the 3D unit volume
element in PGA.
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Other linear combinations, already known from common practice in homo-
geneous coordinates, continue to be sensible constructions in PGA. But in
the case of lines, some care is required!

• Centroids of points:
The unit-weight point between two normalized points P and Q is (P +
Q)/2. The centroid of two or more non-normalized points is their sum:
C =

∑
i Pi; it is weighted with the total weight of the individual points.

The centroid location is obtained through normalization (dividing by

the coefficient of I3, which is C? ≡ C I−13 = C Ĩ3 = −C I3).

Obviously, as in the usual way, you can use affine combinations of
points to parametrize the points on a line segment, or in a triangle or
tetrahedron. In the 4-dimensional PGA of 3D space, trivectors behave
just like vectors in their linear properties.

• Bisector of two planes:
The plane that bisects two given normalized oriented planes p1 and p2
is b = p1 + p2. If the planes intersect in a finite line, the resulting
plane is indeed a bisection of the angular difference. If the planes have
a vanishing (ideal) line in common, the resulting plane b is halfway in
distance between the two: a ‘translational bisector’.

Note that which of the two possible bisectors you get depends on the
orientation of the plane: what is generated is halfway between the
‘smallest move’ to align the two planes in orientation or location. So
the other bisector is just the difference p1 + (−p2) = p1 − p2 (with a
suitably chosen orientation; you might want p2− p1 instead). Exercise:
what happens with oppositely oriented normalized parallel planes?!

• Bisector of two lines: If two normalized lines L1 and L2 are in the
same plane, then M = L1 + L2 is their bisector. Just as for planes,
this unifies bisection in angle and in distance (if the lines are parallel),
and the orientation of the lines determines which of the two possible
bisectors results.

But when the lines are not coplanar, the result is not a line: alge-
braically, the 2-blades add up to a bivector that cannot be written as
a 2-blade. This is a screw, and we will meet it later in Section 5.6.
For now, restrict your addition of lines to 2D subspaces (where it is
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convenient for handling edges, bisectors and the like within a spatial
polygon).

Steven De Keninck made an interesting ‘Wedge Game’ in 2D PGA, in which
your assignment is to make increasingly more involved constructions in pla-
nar geometry. It is most suitable for tablets or phones (since pinching and
spreading of elements is then available to denote their combinations) and may
be found at https://enkimute.github.io/ganja.js/examples/example_
game_wedge.html. The game uses some of the constructions above, but you
should only play it after also absorbing the join operation in the next Sec-
tion 3 (which enables you to construct the line connecting two points, and
related constructions).

2.9 Example: Solving Linear Equations

In standard linear algebra, a system of linear equations
a11x+ a12y + a13z + a10 = 0
a21x+ a22y + a23z + a20 = 0
a31x+ a32y + a33z + a30 = 0

(22)

is solved by determinants (by Cramer’s rule), matrix inversion, or numerical
methods. Our meet operation allows for a directly geometrical perspective.
Each of the equations represents a plane, and the solution is therefore re-
quired to lie on the meet of those planes. Let pi be the plane for row i, so
equal to the PGA vector

pi = ai1 e1 + ai2 e2 + ai3 e3 + ai0 e. (23)

Then the solution of the linear system for x = xe1 + ye2 + ze3 is fully
represented as the point X computed by

X = p1 ∧ p2 ∧ p3. (24)

Computing this quantity allows the coordinates of the solution x to be read
off immediately, as we saw when discussing eq.(13).

This form of the solution of a set of linear equations works in two direc-
tions: it is a compact way to express or compute the solution; and, conversely,
numerical methods developed for solving equations can lead to efficient im-
plementations of the outer product. This is beginning to be investigated,

23

https://enkimute.github.io/ganja.js/examples/example_game_wedge.html
https://enkimute.github.io/ganja.js/examples/example_game_wedge.html


both for the exact case, and for overdetermined equations and their least
square solutions. In one of the early papers [6], this simple method was com-
pared to Cholesky decomposition. In 3D, the outer product method takes
60% more operations, but since it can be implemented in parallel using GPU
architecture, it is still a contender.

Of course vanishing points are also legitimate solutions to linear systems.
And when the equations are degenerate, the outcome of the outer product
is zero. In that case the point as a solution is underdetermined, the actual
solution may be a line, just as if there were only two equations. In PGA
an expression like p1 ∧ p2 specifies that line solution compactly, and as we
have seen then determines the usual line parameters. In the context of linear
equations, this 2-blade solution can be converted to the more classical form
of (a specific solution plus an amount of kernel). We hope to report on this
soon [7].

2.10 Summary

PGA Rd,0,1 is an algebra with d Euclidean dimension, and a null dimen-
sion (which we denoted by e). We use it to encode planes in d-dimensional
Euclidean space as vectors in our representational space.

We introduced the first GA product in PGA: the meet, the linearized
oriented intersection operation encoded as the outer product ∧. We showed
in 3D how that this product gives us the representation of lines as 2-blades
and points as trivectors, and identified the correspondence to their classical
parametrizations.

When planes are a meet with the null plane e, we obtain the ‘ideal’
elements (which we called ‘vanishing points’ etc.): the intersection line of
parallel planes, or the intersection point of parallel lines (which acts as a 1D
direction element). These are all a natural part of this algebra of planes.
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3 The join in PGA

The meet intersects planes to produce reduced elements like lines and points.
We also want to construct elements by merging elements, such as permitting
two points to determine a line. That operation is called the join. It is a
union, linearized in similar fashion to how the meet linearize intersection. In
fact, the two operations are dual to each other.

3.1 The Join as Dual to the Meet

The join (Grassmann’s regressive product) was designed to be dual to the
meet (see e.g., Chapter 5 in [1]). In PGA, where ∧ is an intersection (and
reminds us of the set intersection ∩), it is customary to denote the join by
a ∨ (which handily reminds us of set union ∪).

The join was designed carefully by Grassmann to satisfy the Common
Factor Axiom (CFA), which gives a consistent relationship to the meet (see
[8]). We will employ it in the form7

(B ∧C) ∨ (A ∧B) = (A ∧B ∧C) ∨B. (25)

To make this equation valid without extraneous grade-dependent signs or
weights (as we would desire for our oriented geometry), we should define the
join in a fully Euclidean geometric algebra as

(A ∨B)? = A? ∧B?. (26)

We prove this consequence of the CFA in exercise 12.2:5. If we are in an
n-dimensional algebra where undualization is possible, it would follow from
eq.(26) that

A ∨B =
(
A? ∧B?

)−?
. (27)

Usually (and always in [1]), dualization here is division by the invertible
pseudoscalar In, so undualization of eq.(26) is multiplication by it. Using
the contraction c, which is adjoint to the outer product, we can even rewrite
this to A?cB, so ∨ is like ‘do ?c’. This was how we treated it in [1] in

7 This deviates from [8], where the CFA reads: (A∧B)∨ (B∧C) = B∨ (A∧B∧C).
We have simply swapped the arguments of the join. We do this here, at the definition
level, to prevent inconvenient argument swaps throughout. With our CFA, the line from
P to Q is P ∨Q, with [8]’s CFA that would have been Q ∨ P .
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general (though since we were then focusing on a non-dual representation,
this actually corresponded to the meet rather than the join.) But in the
present text, we will stay at the more obviously symmetric level of duality
between meet and join involving the undualized outer product of duals.

Thus defined, the join of two elements in a space of dimension d is of
grade

grade(A ∨B) = grade(A) + grade(B)− n (if non-negative)

= grade(A ∧B)− n (if non-negative). (28)

If the resulting grade is negative, the join is zero – the outer product will
have made it so.

The join is clearly linear and associative, but may obtain an extra sign
when its arguments are swapped.

B ∨A = (−1)(n−a)(n−b)A ∨B, (29)

with a = grade(A) and b = grade(B). This minus sign equals the parity of
n when both A and B are even, and of n + 1 when both A and B are odd,
and there is no sign in the other cases.8

By invoking the duality, which implicitly involves orthogonality, the join
requires a metric to be defined in this manner. Mathematically inclined au-
thors like Browne [8] develop the join non-metrically, as a counteroperation
to the meet, and this works. They then later show more compact expressions
when they allow themselves to have a metric. All very beautiful, of course,
but for our goal of representing Euclidean motions, we decided to use the
metric approach immediately.9

3.2 Constructing the PGA Join

In PGA we cannot quite convert eq.(26) to an explicit definition of the form
of eq.(27), since we cannot undualize so simply. For the pseudoscalar I of

PGA is ‘null’; the customary I−1 = Ĩ/(IĨ) just does not compute.

8Note that if you would change the pseudoscalar of your space for some reason, a swap
of its sign leads to a sign swap of the regressive product, since the pseudoscalar occurs an
odd number of times in the definition.

9I have spelled out the correspondence of the present text with Browne’s notation in a
separate appendix [9].
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So we momentarily transcend PGA; we realize that PGA is ‘unbalanced’
in this sense, but that it can be balanced in a larger space with an additional
basis vector er reciprocal to e (so that er · e = 1).10 Then the pseudoscalar I
has a reciprocal Ir such that IrI = 1, and dualization can be performed. It
turns out that the final result of this roundabout way of constructing a join

for the meet is completely expressible in the regular PGA we started with.
So we can then take the resulting expression as the intrinsic definition of our
join in the confidence that we will be consistent. We are especially aiming
to getting the signs correct, for we do want a geometric algebra in which the
orientations are used in a meaningful manner.

With this in mind, we follow a similar pattern to eq.(27) of defining the
regressive product as dual to the outer product in PGA and set

A ∨B =
(
A∗ ∧B∗

)−∗
. (30)

Note that this uses the full metric duality in the extended space we have
set up, not merely the Euclidean duality. We use as pseudoscalar I for
PGA: I = e ∧ Id. Dualization can then be performed only in the combined
space that balances the algebra, by means of the reciprocal pseudoscalar
Ir = Ĩd ∧ er. Undualization involves I. It will be natural to reduce results
by means of duality in the Euclidean subalgebra of PGA. To distinguish the
two dualities, we will denote full PGA duality by ( )∗ and Euclidean duality
by ( )?:

A∗ ≡ A Ir whereas A? ≡ A I−1d = AĨd. (31)

The context usually clarifies which one is required, so we made the difference
subtle enough not to draw too much attention to itself.

Our k-vector elements in PGA Rd,0,1 will always be of the form

A = TA + ePA, (32)

with TA and PA from a d-D Euclidean GA Rd, with its pseudoscalar Id and
the usual Euclidean dualization (relative to that pseudoscalar) of TA

? ≡ TA Ĩd
etc. We call T the tangent space aspect, and P the positional aspect (hence
the mnemonics).

Let us first compute the (full) dual of a PGA blade; it is an element of
the dual space to PGA.

A∗ = A · Ir = (TA + ePA) · (̃Id er) = T?
A e

r + P̂?
A, (33)

10If you want to compute with this reciprocal er in GAviewer, where e is represented as
ni, then define ‘er = -no; ’.
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Here X̂ = (−1)grade(X)X, the grade involution, which accounts for the sign
swaps involved in moving the Euclidean k-vector TA ‘to the other side of
e’. Undualizing an expression of this form then involves dotting with the
pseudoscalar eId (and reverts to the original blade).

We compute for the join

A ∨B =
(
A∗ ∧B∗

)−∗
=

(
(T?

A e
r + P̂?

A) ∧ (T?
B e

r + P̂?
B)
)−∗

=
(

(T?
A ∧P?

B) er + (P̂?
A ∧T?

B) er + P̂?
A ∧ P̂?

B

)−∗
= (T?

A ∧P?
B) Id + (P̂?

A ∧T?
B) Id + e (PA

? ∧PB
?) Id (34)

= (T?
A ∧P?

B)−? + (P̂?
A ∧T?

B)
−?

+ e (PA
? ∧PB

?)−?

= TA ∨PB + (−1)d P̂A ∨TB + e (PA ∨PB). (35)

Halfway this derivation, you see how this reduces the join in PGA to a
combination of operations and duals in the Euclidean subalgebra; in the
final line we even rewrote that fully in terms of the Euclidean join.

The resulting expression can be computed completely within the algebra
Rd,0,1 = Rd ⊕ e, without running into any problems with its non-invertible
pseudoscalar I. Since it is completely computable in Rd,0,1, it is part of its
algebra PGA. We have found our join operation!

So indeed, PGA provides a fully geometrically significant algebra of flats
in a space of one more dimension than the Euclidean dimension d. Having
said that, the defining expressions for the join in PGA do look somewhat
contrived – but at least you understand where they came from.

Later, in Section 9.2 when we have the Hodge dual (a specially con-
structed form of dualization which exists entirely with the algebra and de-
noted by a prefix ? symbol), we can rewrite and compute the join without
splitting it into a sum of terms, as

A ∨B = ?−1
(
? B ∧ ?A

)
. (36)

The swapping of arguments exactly compensates for the signs resulting from
the Hodge dualization.

We will see that the Hodge duals involve merely the selection of certain
components on a dual basis, with some appropriate sign changes. Then
eq.(36) shows that the expensive part to compute in a join operation is
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really only an outer product – which is a sparse product anyway due to its
property of ‘repeated factors give zero’. You may view join and meet as
comparably elementary operations of PGA.

3.3 Examples of the Join

3.3.1 A Line as the Join of Two Points

Let us verify the join of two point 3-blades in 3D: P = I3 + e (pI3) and
Q = I3 + e (qI3).

P ∨Q =
(
I?3 ∧ (qI3)

?
)−?

+
(

(̂pI3)
? ∧ I3

?
)−?

+ e
(

(pI3)
? ∧ (qI3)

?
)−?

= (1 ∧ q) I3 + (−p ∧ 1) I3 + e (p ∧ q) I3

= (q− p) I3 + e (p ∧ q) I3

= (q− p) I3 + e
(
1
2
(p + q) ∧ (q− p)

)
I3. (37)

We see indeed that the tangent aspect is the 2-blade (q−p) I3 orthogonal to
the direction vector of the line. The direction of the line is thus u = q−p, so
this is the line from P2 to P1. Its magnitude is proportional to the oriented
distance between the points. Comparing the positional aspect in the second
term with eq.(10) shows that the line passes through the centroid (p + q)/2
of the points (as expected!).

3.3.2 Constructing a Line from a Point P and a Direction u

Joining a point P to the vanishing point Vu = euI3 in vector direction u
gives:

P ∨ Vu =
(
I3 + epI3

)
∨ (euI3)

=
(
I3
? ∧ (uI3)

?)−? + 0 + e
(
(pI3)

? ∧ (uI3)
?)−?

= (1 ∧ u) I3 + e (p ∧ u) I3

= uI3 − e (p× u) (38)

The components of this expression are again minus those of the Plücker coor-
dinates [−u,p×u] of this line, on the bases {e23, e31, e12} and {e01, e02, e03}.
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3.3.3 Constructing a Plane as the Join of Three Points

Let us join a third point R to a line P ∨Q of eq.(37).

P ∨Q ∨R =

=
(

(q− p) I3 + e (p ∧ q) I3

)
∨ (I3 + e rI3)

=
(
(q− p) ∧ r

)−?
+
(
1 ∧ (p ∧ q)

)−?
+ e

(
p ∧ q ∧ r

)−?
= (q ∧ r + r ∧ p + p ∧ q) I3 + e (p ∧ q ∧ r) I3

= (pr + qr + rr + e) (p ∧ q ∧ r) I3. (39)

We used the reciprocal frame {pri} of the vectors {pi} (being p, q, r)
to write this more compactly, see exercise 12.2:1; here pri · pj = δij. Since
the final factors form a scalar, the result is indeed a vector, and therefore
represents a plane. The scalar is twice the area of the triangle formed by the
three points.

It is easy to show that the point P lies on the plane P ∨Q ∨R:

(pr + qr + rr + e)∧
(
(1 + ep) I3

)
= −e

(
(pr + qr + rr) ·p

)
I3 + eI3 = 0, (40)

and similarly for the other points. So the join indeed computes the correct
plane containing all three points.

3.3.4 The Join of Two Lines (and the Importance of Contraction)

When we join two lines, which are 2-blades, we should expect a scalar
outcome. Let us parametrize the lines by their direction vector u and moment
vector m (which has to satisfy m · u = 0).

Then we compute

L1 ∨ L2 = (u−?1 − em1) ∨ (u−?2 − em2)

=
(
(u−?1 )

? ∧ (−m?
2) + (−m̂?

1) ∧ (u−?2 )
?)−?

+ e (m?
1 ∧m?

2)
−?

= −u1 ·m2 − u2 ·m1 + 0. (41)

We will see later (in Section 8.6) that this scalar outcome is related to a
volume spanned by the lines involving their direction vectors u1, u2 and
their perpendicular distance, and that its sign is related to their relative
chirality (the ‘handedness’ of their relative positioning).
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3.4 Summary

The (linearized) union of planes in d-dimensional Euclidean space is encoded
by the join. The join is dual to the meet; developing that relationship
carefully leads to computable expressions for the join in eq.(35) or eq.(36).
Its computational complexity is similar to the meet (since duals can be im-
plemented as signed coordinate selections).

The join allows us to connect points to make a line, or a line and point to
construct a plane, etc. It is as fundamental as the meet for the expressiveness
of PGA.

We kept the orientation and magnitude information consistent by care-
fully designing the relationship between meet and join around the Common
Factor Axiom. Our precise choice is slightly unconventional, but has advan-
tages for the readability of our PGA framework.
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4 The Geometric Product and PGA Norms

4.1 The Geometric Product of PGA

As a geometric algebra, PGA also has a geometric product. The multiplica-
tion table (or Cayley table) of this geometric product is given in Figure 1. We
will use it to form the versors representing the Euclidean transformations,
but also to study the relationships between geometric elements, in the next
section.

Figure 1: The Cayley table of 3D PGA. In the text we denote e0 by e.

4.2 The Euclidean norm

The natural concept of the norm of an element A in geometric algebras is
the usual

‖A‖ =
√
A ∗ Ã =

√
〈A Ã〉0, (42)

where ∗ is the scalar product, and 〈 〉0 selects the grade-0 part of its argument;
the two are equivalent. This definition works well in spaces where the basis
vectors do not have negative squares: the reversion always makes similar
elements cancel each other with a positive or zero scalar, so the square root
exists. This definition therefore seems to suffice for PGA.
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4.3 Vanishing or Infinity Norm

However, when an element A is ‘null’ (i.e., has a zero square), the standard
norm eq.(42) is rather useless. For instance, when we have an element of the
form δne as the result of the meet of two planes with normal n at a distance
δ apart, we would like to extract the distance δ from the result. But the
norm of the null result is always zero.

There is a simple method which can be implemented easily: null elements
have an e as a factor; (1) isolate the null elements, (2) strike out that factor
e, and (3) compute the Euclidean norm of what remains. Algebraically, it
can be defined by employing the reciprocal er of e, as a dot product (so that
the parts not containing e automatically do not contribute).

‖A‖∞ = ‖er · A‖. (43)

This is called the infinity norm, or ideal norm; for us it would be consistent
to call it the vanishing norm.

Note that this definition eq.(43) is not algebraically a part of PGA proper,
since we need to invoke the reciprocal er of e, which is in the dual space of
PGA. When in Section 9 we have the Hodge dual, we can employ that to
denote the infinity norm as

‖A‖∞ = ‖ ?A‖, (44)

since the Hodge dual also has the effect of removing the e part from A and
producing something of which a Euclidean norm can be taken. (It also adds a
multiplication factor e to an already Euclidean part, automatically excluding
it from contributing to the norm.)

Actually, since the squared norm definition destroys the orientational
sign of its arguments, one might prefer to treat the Euclidean element er ·A
directly; in the above example, δn is a geometrically significant quantity,
whereas |δ| by itself is not. In an implementation, finding this corresponding
Euclidean part, this is simple enough: just take the components of A on a
basis e0J and consider them as if they were those of an element on the basis
eJ . Done.11 We will treat the issue of oriented quantities in more detail in
Section 8, as a more subtle form of quantitative geometry.

11 In terms of the Hodge dual of Section 9, the extraction of the Euclidean factor X
from an element eX is done by X = (?eX) I3(−1)(x+1)(x+2)/2, with x ≡ grade(X).
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4.4 Using Norms

We should emphasize that a general element of PGA of the form A = TA +
ePA typically has both a regular norm (returning a magnitude for TA) and
an infinity norm (returning a magnitude for PA):

‖A‖ = ‖TA + ePA‖ = ‖TA‖, (45)

‖A‖∞ = ‖TA + ePA‖∞ = ‖ePA‖∞. (46)

These norms can be used as a compact way of computing the length and
area of an edge loop, or the area and volume of a triangle mesh [10, 11].

In 2D PGA, define an edge loop as a concatenation of consistently ori-
ented weighted lines between points Pi, each edge Li being the join of two
consecutive points Li = Pi ∨ Pi+1 (with the last edge formed by joining the
last point to the first). The points here are in the 2D subspace, so they are
bivectors of the form (1 + ex) I2, see exercise 12.2:3; the edges are vectors of
2D PGA. Then the contour length c and area a of this loop are simply

c =
∑
i

‖Li‖ and a = 1
2!
‖
∑
i

Li‖∞. (47)

Note the subtlety in placement of the norm delimiters relative to the sum-
mation! These formulas also work for a loop of points lying in a common
plane in d-dimensional space, where points are represented as d-vectors; so
you can use them for polygons in 3D.

Similarly, we define a closed triangle mesh through its faces fi charac-
terized by oriented weighted planes constructed by joining the three vertices
of each triangle, in an order that is everywhere consistent with the mesh
orientation: fi = Pi1 ∨ Pi2 ∨ Pi3. The points should be 3D PGA trivectors,
so that the faces are vectors in 3D PGA. Then the area a and volume v of
this mesh are simply

a = 1
2!

∑
i

‖fi‖ and v = 1
3!
‖
∑
i

fi‖∞. (48)

Both formulas clearly make essential use of the capability of PGA to have its
geometrical elements be weighted and oriented. Their proof may be found
in [11].
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4.5 Summary

We introduced two types of norm in PGA, to enable the measurement of
magnitudes of finite and ideal elements. In an application of these norms,
we demonstrated compact PGA expressions for integral measures on discrete
meshes.

We remarked that for an oriented geometry, we may need to be more
more subtle than just taking a norm (but this is new terrain).
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5 Bundles and Pencils as Points and Lines

Everyone who encounters PGA for the first time is taken aback that points
in 3D should be represented by trivectors. It seems only natural that points
should be vectors, and apparently some people feel very strongly about that –
I used to, myself. Yet having points as trivectors is the natural consequence of
identifying the outer product with an intersection operation. In this section, I
will try to make the ‘points as trivector’ view more acceptable, and show how
this leads to some truly compact constructions for the relationships between
geometrical primitives.

Figure 2: Visualization of the bundle of planes at a point X, and a basis of
three planes to represent all. The one depicted happens to be orthonormal,
but that is not necessary.

5.1 The Bundle of Planes at a Point

Many planes pass through a 3D point X with location x = x1e1+x2e2+x3e3.
These planes can all be characterized on a 3D basis of planes through that
point. We could choose, for instance, planes parallel to the coordinate planes
(orthogonal to the coordinate directions) for such a basis: p1 = e1 + x1e and
p2 = e2 + x2e and p3 = e3 + x3e, with {e1, e2, e3} an orthonormal basis for
convenience.
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Any linear combination of such planes forms a plane that also passes
through the point at location x (you may feel more comfortable verifying
this using your familiar homogeneous coordinates: if x ·p1 = 0 and x ·p2 = 0,
then x · (αp1 + βp2) = 0, so the weighted sum of p1 and p2 is a new plane
that also contains x). There is thus a 3-D linear space of planes, all passing
through the point at location x; this is called the bundle of planes at that
point. In geometric algebra, whenever we have a 3-D linear space, we can
characterize it by a 3-blade T , such that

p∧T = 0 ⇐⇒ p is a member of the subspace characterized by T . (49)

In a Grassmannian sense, the 3-blade T is the subspace - as we explained in
Chapter 2 of [1], or see [8]. In fact, it is more quantitatively specific than a
mere characterization of a set of vectors, since it also has an orientation and
a magnitude, beside the spatial attitude.

Since the trivector
Tx ≡ p1 ∧ p2 ∧ p3 (50)

contains all the planes passing through the point X at location x, it pinpoints
that point. We could let it be the point. Indeed, if we have all operations
like meet, join and so on to work with such a representation, there is no real
need for a separate data structure to describe the point. So let us simply
identify trivector Tx with the point X at location x, and see where that leads
us.

And immediately, using the trivector X = Tx to represent the bundle of
planes through X allows some standard techniques from geometric algebra
to acquire a powerful geometric interpretation. For instance, the orthogonal
projection of a vector x onto a subspace characterized by a blade A is (see
Chapter 6 of [1])

orthogonal projection of x to subspace A: PA[x] ≡ (x ·A)/A. (51)

(Why? Because (x ·A)/A = 1
2

(x A A−1− ÂxA−1) = 1
2

(x− ÂxA−1) is half
the sum of x and the reflection of x in A, see Table 7.1 in [1]).

We can therefore project an arbitrary plane p to the bundle of planes
passing through X, and the resulting p′ ≡ (p · X)/X must pass through
X, since it is part of the subspace of planes that do. Moreover, it is the
orthogonal projection onto the bundle, in the sense that the result p′ is in the
bundle, but the difference p′− p is orthogonal to the bundle. The only plane
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Figure 3: Computational relationships between a point X and a plane p.
The weighted e-plane (p∧X)/X is denoted by a weighted dotted point at the
origin.

orthogonal to the bundle (i.e., to all planes in the bundle) is the vanishing
plane e (check that indeed p · e = 0 holds for any plane p). Therefore the
difference p′ − p is purely a multiple of e, with no Euclidean component
in their difference; it follows that the two planes p and p′ must have the
same Euclidean normal. This implies that the two planes do not only have
the same attitude, but also the same orientation (‘handedness’, useful for
distinguishing back and front), and they even have the same weight. So they
are truly parallel, even in an oriented sense.

We have thus found a simple way of finding the parallel plane through
the point X, to a given oriented plane p, just by employing the projection
PX [ ].

parallel plane to p through point X: PX [p] ≡ (p ·X)/X. (52)

Such is the power of geometric algebra: the same structural operators (here
orthogonal projection) acquire new meanings in new embeddings.

Another way of looking at the equation is: p ·X is of grade 2, contained
in X, and p · (p ·X) = (p ∧ p) ·X = 0; therefore p ·X is the line through X
orthogonal to p. Let us keep this nice intermediate result:

line orthogonal to plane p and through point X: L = p ·X. (53)
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In the projection eq.(52), the subsequent division of p ·X by X, which is the
local pseudoscalar, takes the orthogonal complement of this line (at X), and
therefore results in the plane orthogonal to that line - which is the parallel
of the oriented plane p (since we have been careful about the signs: once a
product with X, and once a division, ‘next to’ each other). It is actually
rather remarkable that the division by X does this orthogonal complement,
i.e., dualization, locally at the location X, independent of the origin. As we
will see later, in Section 9, projective duality in PGA does not do this.

The sister operation to orthogonal projection is, in general, the orthogonal
rejection

orthogonal rejection of x to subspace A: RA[x] ≡ (x ∧A)/A. (54)

The outcome of this operation is a vector whose dot product with A is
zero, so it is orthogonal to A. As we have just seen, in PGA the rejection
p′ − p = (p ∧ X)/X is proportional to the vanishing plane e. The constant
of proportionality is geometrically meaningful: if the planes are normalized,
it is the oriented distance of p to X.

oriented distance (times e) from point P to plane p: RX [p] ≡ (p ∧X)/X.
(55)

Let us check the signs, since we want an algebra of oriented flats. With the
conventions we have chosen, the plane n + δe is a distance δ along n from
the origin O = I3. Since RI3 [n + δe] = (0 + δe ∧ I3)/I3 = δe, we should
indeed interpret δ as the distance from point to plane (‘how much to move
the point into the normal direction to get onto the plane’), rather than from
plane p to point O (which would be −δ). Those signs and orderings are hard
to remember, so later we will prefer to test the ‘relative orientation’ using a
probe, to answer questions of the type: ‘is this point at the same side as or
at the opposite side of the plane, relative to this other point?’.

5.2 The Geometric Product of Plane and Point

Together, the projection and rejection form a decomposition of the plane p
relative to the point X:

p = (pX)/X = (p ·X)/X + (p ∧X)/X. (56)

With the above interpretations, this can be read as: ‘the arbitrary plane p
can be thought of as being constructed from a plane through the point X,
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moved parallel to itself by adding the right amount of vanishing plane’. It
makes good geometric sense, and it the algebraic form it takes is pleasantly
straightforward. But actually, this way of translating elements is not that
convenient in implementations, since it is operand dependent. We will do
better later when we design the universal translation operation by versor
sandwiching in Section 6.

An alternative way of reading eq.(56) is: given the PGA quantity pX and
the point X, you can reconstruct a unique plane p. And since we also have
X = p−1 (pX), we could also have constructed the point X if we had been
given this PGA quantity pX and the plane p. Somehow, then, the geometric
product pX contains all geometric relationships between p and X.

Let us investigate this in slightly more detail. When we develop pX in
grades, we obtain a 2-blade and a 4-blade, which can therefore be separately
retrieved. The 2-blade evaluates to

〈pX〉2 = p ·X = (n + δe) ·
(
I3 + e (x · I3)

)
= n · I3 − e

(
n · (x · I3)

)
= nI3 + e

(
x · (nI3)

)
= nI3 + e (x ∧ n) I3. (57)

We have seen this before: it is the line L in the n-direction passing through
location x, i.e. it is the line L through X perpendicular to plane p, with a
normal that obeys the right-hand convention relative to the 2-dimensional
orientation of the plane. And the 4-blade term evaluates to

〈pX〉4 = p ∧X = (n + δe) ∧ (I3 + e
(
xI3)

)
= e

(
δI3 − n ∧ (xI3)

)
= (δ − n · x) I. (58)

This quantity (δ − n · x) is the distance from the point to the plane. It now
makes geometrical sense why the element pX allows mutual retrieval of p
given X, or of X given p.

• If I give you pX, i.e., ‘an oriented line L through X (without telling
you which point on the line X actually is) and an oriented point-plane
distance δ’, and then give you p (which must be perpendicular to the
line in the correct orientation), then you can reconstruct X by moving
the stated distance δ against the direction of L from the intersection
point of line L and plane p.
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• If I give you pX, i.e., ‘an oriented line L through X (without telling
you which point on the line X actually is) together with an oriented
point-plane distance δ’, and then give you X (which must be on the
line), then you can reconstruct p by moving the stated distance δ along
L from X, and establishing the oriented orthogonal plane with normal
vector in the line direction.

Always when we compute a geometric product between two invertible prim-
itives, we can reconstruct either of them given that product and the other
element. The realization of what you would need to perform such a recon-
struction will give you a good intuition of what the different grades of the
geometric product can mean geometrically. Those grade parts are always
handy constructions by themselves, as we saw above for p ·X and p ∧X.

Constructions involving two geometric elements were presented in the
‘cheat sheet’ of recipes at SIGGRAPH 2019 [10], from which we list some in
Table 2. With the above explanation as your guide, you could consider each
of the entries as an exercise in your ability to connect algebra and geometry.
It will always be consistent, and often provide satisfying insights.

5.3 Relocating Any Flat by Orthogonal Projection

Our primitives are made by outer products of planes. We know how to
relocate any plane p to a point X, namely by the orthogonal projection
PX [p] = (p · X)/X by eq.(52). But since orthogonal projection is a linear
transformation, we can extend it as an outermorphism: the orthogonal pro-
jection of an outer product of terms is the outer product of the orthogonal
projections. (See Chapter 4 of [1] for a treatment of outermorphisms.)

This implies that if we want to move a line L to pass through a point X,
we can pick any two planes p1 and p2 that define the line as their intersection,
orthogonally project those, take their outer product, and we will have the line
passing through X, which is thus PX [p1]∧PX [p2]. For an orthogonal projec-
tion, we even have the convenience that the orthogonal projection operation
extends in its mathematical form: (p ·X)/X becomes ((p1∧p2∧· · · ) ·X)/X,
we can just replace the argument in the function for vectors (see Section 4.2
of [1]).

As a consequence, to position any flat A at location X, we simply com-
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pute:12

flat A positioned at point X: PX [A] ≡ (A ·X)/X. (59)

This formula gives us a convenient way to make flats: just construct them
at the origin, where they will be purely Euclidean, and project them to their
destination. If you want to move them again to a different point, project
them to that point, for PQ ◦ PP = PQ: the last repositioning counts.

Such ‘repositioning by orthogonal projection’ is more convenient than
repositioning by the classical translation operator, for which you would first
need to compute the relative position of ‘where you are’ to ‘where you want
to end up’ and use that as an argument for the translation operator.

It is interesting to study what happens when we try to relocate to the
vanishing elements, which contain a factor e. Since PX [e] = 0, such a factor
in a flat will make the whole result 0. You cannot reposition elements from
infinity back to the finite Euclidean domain. Sounds reasonable! And it does
show in detail how PX [A] ‘forgets’ the positional aspect PA of its argument
A = TA+ePA, while constructing a new positional aspect for the X-location,
from TA and x.

Later we will meet more general elements which are the sum of blades of
different grades. The same principle applies to each of the individual terms,
so we can move a general element of the algebra to a point X in this manner:
by orthogonal projection onto the bundle of planes that is the point X.

5.4 Projecting a Point onto a Plane

Projecting a point onto a plane also uses the general orthogonal projection
operation construction. You might guess to use (X · p)/p, and this fine if
you are using as your definition of the dot product: the minimum grade of
the geometric product (as is common!). In the context of our book [1], the
dot product in this chapter is actually always the left contraction c, which
is zero when a larger grade is contracted onto a smaller one. Therefore we
have preferred to denote it as the equivalent p\(p · X) ≡ p−1(p · X) in our
Table 2.

12If you want this to work properly for a scalar A, make sure that the dot product you
use has the property α ·X = αX for a scalar α; when in doubt, use the left contraction,
see [1].
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Figure 4: Visualization of the pencil of planes containing a line L, and a
basis of two planes to represent all. The one depicted happens to be orthonor-
mal, but that is not necessary.

5.5 The Pencil of Planes Around a Line

We have seen how a line is encoded as a 2-blade, by considering it as the
meet of two planes

L = p1 ∧ p2. (60)

This 2-blade characterizes a 2-dimensional subspace of planes: the pencil of
planes around line L, see Figure 4. Any plane also containing the line L
can be written as a linear combination of p1 and p2; any plane that does not
contain the line cannot.

Again the orthogonal projection of a plane p onto this subspace L is a
geometrically sensible plane:

component plane of p containing line L: PL[p] ≡ (p · L)/L. (61)

Here ‘component’ is not a very descriptive term. Perhaps we should re-
vive Grassmann’s own word ‘shadow’: PL[p] is the ‘L-aligned perpendicular
shadow’ of p. The pattern is the same as with projecting on a bundle: the
resulting element must be a plane, since projection preserves grade. It must
be a plane in the pencil, since it is an element of L. And orthogonality of
the difference plane p′− p to L means that the resulting normal vector is the
rejection of the plane normal n by the line direction vector u.

43



Example: for a line L = uI3 in direction u through the origin,
and a plane p = n+δe, we have PL[p] =

(
(n+δe) ·uI3

)
(uI3)

−1 =
(n ∧ u)/u ≡ Ru[n]. So the normal vector of the resulting plane
is perpendicular to the direction vector u of the line.

The rejection (p ∧ L)/L produces another plane. It is orthogonal to
all planes in the pencil (for that is what a rejection by a subspace does:
returning the perpendicular to all vectors in it). It contains p ∧ L, which is
the intersection point of p and L

intersection point of plane p and line L: p ∧ L. (62)

(Exercise: show that indeed
(
(p ∧ L)/L

)
∧ (p ∧ L) = 0.) With that, the

geometry of the rejection is clear:

plane perpendicular to L, through intersection with plane p:

RL[p] ≡ (p ∧ L)/L. (63)

If the intersection happens to be a vanishing point, the rejection is a vanishing
plane, whose weight is the oriented distance from the line L to p. Exercise:
show this!

Example: for a line L = uI3 in direction u through the origin,
and a plane p = n+δe, we have RL[p] =

(
(n+δe)∧uI3

)
(uI3)

−1 =
(n·u)/u+δe = Pu[n]+δe. (Be somewhat careful interpreting the
location of this plane, since it is no longer normalized!) Shifting
the origin of our coordinates to the intersection point (so that
δ = 0) shows the interpretation of this plane.

The sum of projection and rejection relative to the line L again reconstructs
the plane p. Figure 5 shows the planes involved.

5.6 Non-Blade Bivectors are Screws

So far, we have decomposed a plane relative to a point, and a plane relative
to a line. When we would seek to use similar techniques to decompose a line
relative to another line, we need more terms – and the geometric product
automatically provides them:

LM = L ·M︸ ︷︷ ︸
grade 0

+ L×M︸ ︷︷ ︸
grade 2

+ L ∧M︸ ︷︷ ︸
grade 4

(64)
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Figure 5: All relationships of a red plane p and a red line L. In green: p·L, in
yellow: (p ·L)/L, blue plane: (p∧L)/L, blue line: p\(p ·L). The intersection
point is p ∧ L.

The parts of grade 0 and grade 4 can contain only one scalar each, these are
related to the relative angle and distance of the lines (for normalized lines,
for others the linearity gives an overall scaling based on their ‘strength’ or
‘velocity’). The commutator product (defined as L ×M = 1

2
(LM −M L))

must provide all the rest of the relative geometric positioning. You would
expect the orthogonal line connecting L and M to be a part of this; and
indeed it is, but there is more. In contrast to the inner and outer product,
the commutator product of two 2-blades does not produce another blade,
but a 2-vector (a.k.a. bivector). And bivectors in the 4-dimensional space of
3D PGA are unusual.

We remind you that blades can be written algebraically as the outer
product of vectors, and that is the algebraic reason we can geometrically
interpret them as the intersection meet of planes by eq.(7). Hence in PGA
they represent off-origin flat subspaces of different grades. The commutator
product will produce a sum of terms of grade 2, like the other products
produce sums of elements of their own appropriate grades. But in the 4D
representational space, a sum of k-blades is only guaranteed to be a k-blade

45



in the 4D representational space for k = 0, 1, 3, 4; not for grade 2.
It is therefore important to distinguish between 2-vectors and 2-blades.

Since 2-blades square to a scalar, testing a grade 2 element B for bladeness is
equivalent to confirming that B2 only contains scalar parts; this boils down
to verifying that

bladeness test for 2-vector: check whether B ∧B = 0. (65)

The 2-blades come in two varieties13 in 3D PGA:

• If B2 < 0, the 2-blade B represents a true line, the intersection of two
Euclidean planes. When exponentiated, such elements will generate a
rotation around that line, as we will see in Section 7.

• If B2 = 0, the 2-blade B represents an ‘ideal’ line, the intersection of
some Euclidean plane with the vanishing plane e at infinity. Since such
lines contain vanishing points, we call them ‘vanishing lines’. When
exponentiated, such elements will also generate a rotation around that
vanishing line. But historically, we prefer to refer to that as a transla-
tion, in a direction perpendicular to the Euclidean plane involved.

Therefore, the 2-blades are the generators of simple motions: rotations and
translations. The 2-vectors can also be exponentiated, but they then generate
a screw motion, the most general kind of Euclidean motion in 3D. This can
be decomposed (according to Chasles’ theorem) into a rotation around a line
and a translation along that line. We will treat this later in Section 6.5; let
us now establish that there are two unique special lines hiding within every
2-vector.

In particular, we show that we can split any bivector B into a weighted
sum of a unit line L and its unit dual vanishing line LI:

B = αL+ β (LI). (66)

(Remember that I ≡ e I3 is the pseudoscalar of the 4D representational
space of 3D PGA.) Here L and LI are blades, so they satisfy L ∧ L = 0
and (LI) ∧ (LI) = 0. They also commute: due to LI = IL, we have
L(LI) = L2I = IL2 = (IL)L = (LI)L. They are geometrically orthogonal,
since L · (LI) = (L ∧ L) I = 0.

13B2 > 0 does not occur in PGA (Euclidean PGA) – though it happens in Hyperbolic
PGA [12]!
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We now compute the α, β and L from eq.(66). Since LI = IL, we
can factorize the equation to B = (α + βI)L. This is a kind of polar
decomposition of B, with a self-reverse factor, see [13]. By squaring, we can

eliminate the L (since LL̃ = −L2 = 1) and directly solve for α and β:

BB̃ = B · B̃ + 1
2
(B B̃ − B̃ B) +B ∧ B̃ = B · B̃ +B ∧ B̃ = α2 + 2αβ I. (67)

Terms of corresponding grades should be equal at both sides, so

α =
√
B · B̃ and βI =

B ∧ B̃

2
√
B · B̃

. (68)

Note that this does not work if α = 0, which happens precisely when BB̃ = 0.
In that case B was already a 2-blade, of the form βLI.

For BB̃ 6= 0, we compute

LI = BI/α =
BI√
B · B̃

(69)

L = (B − βLI)/α =
B√
B · B̃

(
1− 1

2

B ∧ B̃
B · B̃

)
. (70)

So combining it all, we have decomposed the 2-vector B as a sum of two
commuting 2-blades

B = B
(
1− 1

2

B ∧ B̃
B · B̃

)
︸ ︷︷ ︸

Euclidean line

+ 1
2
B
B ∧ B̃
B · B̃︸ ︷︷ ︸

vanishing line

, (71)

unless B · B̃ = 0; then B is already a vanishing line.

Example: Split the non-blade bivector B = (e1−e3)∧e2 + e∧e3

into commuting blade parts. We compute

B ∧ B̃ =
(
(e1 − e3) ∧ e2 + e ∧ e3

)
∧
(
e2 ∧ (e1 − e3) + e3 ∧ e

)
= −2 e e1 e2 e3 6= 0, (72)

so B is indeed not a blade. Then

B · B̃ =
(
(e1 − e3) ∧ e2 + e ∧ e3

)
·
(
e2 ∧ (e1 − e3) + e3 ∧ e

)
= (e1 − e3) · (e1 − e3) = 2. (73)
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It then follows by substitution that

B = (e1 − e3) ∧ e2 + e ∧ e3

=
(

(e1 − e3) ∧ e2 + e ∧ (1.5 e3 − e1)
)
− 1

2
e (e1 + e3)

= (1 + e e2/2)(e1 + e3)
? − 1

2
e (e1 + e3). (74)

It is easy to establish that the two terms are blades, and that
they indeed commute.

The decomposition into two commuting 2-blades will aid us in the screw
interpretation of B; those 2-blades will provide the screw axis, and its pitch,
in Section 7.1.

5.7 Summary

We developed many useful formulas to combine the flat elements of our al-
gebra, by employing the metric aspects implicit in the geometric product.
Application of standard techniques like orthogonal projection and decompo-
sition led to an understanding of the principles behind compact constructions
and their encoding.

For example, we found that we can place an element at any location X
by just projecting it onto the trivector representing that location in eq.(59).
The cheat sheet of Table 2 lists some of the more common constructions.

We also pointed out that 3D lines are unusual: when you add them
arbitrarily you get non-lines (screws). But any bivector of PGA can be
decomposed orthogonally into a line and an orthogonal vanishing line by
eq.(71).
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geometric relationships expression

Plane perpendicular to plane p and containing line L p · L
Point intersection of plane p and line L p ∧ L
Line perpendicular to plane p and containing point P p · P

Distance (times I) from point P towards plane P p ∧ P
Plane perpendicular to line L and containing point P L · P
Plane parallel to plane p and containing point P (p · P )/P
Line parallel to line L and containing point P (L · P )/P

Point repositioned from point X and placed at point P (X · P )/P
Plane projected from plane p and containing line L (p · L)/L
Point projected from point P and lying on line L L\(L · P )
Point projected from point P and lying on plane p p\(p · P )
Plane as reflection of plane p in the reflector point X −X p/X
Line as reflection of line L in the reflector point X X L/X

Point as reflection of point P in the reflector point X −X P/X
Line from point P to point Q P ∨Q
Line from point P to direction Vu P ∨ Vu

Plane through points P , Q, R P ∨Q ∨R
Distance between point P and point Q ‖P ∨Q‖
Chirality (times I) between line L and line M L ∧M

Table 2: A ‘cheat sheet’ with useful nuggets in 3D PGA. Here p is a plane,
L a line, and P , X points. If you are not interested in scaling factors, you
can replace the divisions by reversions; this will be computationally cheaper,
but still propagate the orientation signs consistently. See also a similar table
by Gunn and De Keninck [10]; and Selig [2](his Section 4.9) effectively con-
tains many of the same relations (though in a commutator/anti-commutator
notation).
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6 Euclidean Motions

through Planar Reflections

We have designed PGA as an algebra of planes since we want to describe
Euclidean motions by means of planar reflections. This follows the general
Cartan-Dieudonné Theorem:

All orthogonal transformations in an n-D symmetric bilinear space
can be constructed from at most n reflections.

It is immediately obvious that in 3D we can use two planar reflections to
construct the two typical motions: rotations and translations. Using more
planes combines such basic motions. But with 3D planes residing in a 4D
representational space, Cartan-Dieudonné states that there will not be mo-
tions requiring more than 4 reflections. These multiple reflections have been
given names:

• 0 reflections: the identity

• 1 reflection: a planar reflection

• 2 reflections: when the planes are parallel, this is a translation; when
intersecting, a rotation around the common line; when perpendicular,
a line reflection

• 3 reflections: this adds an extra reflection to the previous case, and
generates a glide reflection when two of the three are parallel, and a
rotoreflection then none are; when the three planes are perpendicular,
this produces a point reflection

• 4 reflections: the general Euclidean rigid body motion, a ‘screw mo-
tion’. We can factorize a general motion always as a rotation around
an axis and a translation along that same axis (Chasles’ theorem). We
will see that this description by means of four real reflections in real
planes corresponds, in its coordinate form, directly to the often-used
19th century description of 3D rigid body motions by dual quaternions
(which are often needlessly viewed as ‘complex’ in all senses of the
word).

Let us find the versors corresponding to these multiple reflections in planes.

50



6.1 Multiple Reflection as Sandwiching

For the algebra of Euclidean directions, reflection of a direction vector x in
a plane through the origin with normal vector n is the reflected direction
−n x n−1 (if this is new to you, consult the earlier chapters of [1] or some
other general text). This sandwiching operation:

x 7→ − n x n−1 (75)

then extends in two ways.

• It can be applied to any other element X of GA that we construct as
linear combinations of geometric products (and we have no desire to
make anything else)

X 7→ n X̂ n−1, (76)

where X̂ = (−1)grade(X)X, the grade involution, introduces a minus sign
for the odd grade elements, and no sign for the even grade elements.

• We can perform sandwiching by repeated reflection in other elements.
Associativity allows us to group those in versors, which are geometric
products of invertible vectors. In a Euclidean geometric algebra, this
looks like (see Chapter 7 of [1]) a sandwiching product

x 7→ (−1)k (nk nk−1 · · ·n1) x (n−11 · · ·n−1k−1 n−1k )

= (−1)k (nk nk−1 · · ·n1) x (nk nk−1 · · ·n1)
−1

= V̂ xV −1, (77)

with the versor V defined as the product of k reflectors (and V̂ ≡
(−1)kV ). For motions, we are mostly interested in applying even ver-
sors; then there are no signs to worry about.

• The inversion might seem somewhat expensive to perform – it is defined
as V −1 = Ṽ /(V Ṽ ). But in PGA Rd,0,1, the denominator V Ṽ is always
positive since all Euclidean vectors have positive squares. So if you
are only interested in results modulo a positive scaling factor (and in
computer graphics, that is often the case), then in the sandwich product

you can replace the inverse by the much cheaper reverse Ṽ (which is
merely a grade-dependent sign: a minus sign for the parts of grade 2
and 3).
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Versors work in a general geometric algebra. Multiple reflections preserve the
dot product between vectors of the representational space; therefore versors
are orthogonal transformations of that space. By a proper choice of repre-
sentational space relative to our usual ‘task space’, those should be precisely
the motions we are interested in. In PGA, with its representational linear
space in which Euclidean planes are represented as vectors, the Euclidean
motions will thus be represented as orthogonal transformations.

6.2 One Planar Reflection

Let us reflect a general point X = (1 + ex) I3 in a general plane p = n + δe
(where we normalize n2 = 1 for convenience). The inverse of that plane p is
the plane itself, since p2 = 1.

X ′ ≡ −pX p−1

= (n + δe) (1 + ex) I3 (n + δe)

= (n + δe) (1 + ex) (n− δe) I3

= (n + n ex + δe) (n− δe) I3

= (n2 + n ex n + δen− n δe) I3

=
(
1 + e (2δn− nxn)

)
I3

=
(

1 + e
(
2(δ − x · n) n + x

))
I3

≡ (1 + ex′) I3. (78)

The two ways of spelling out the result are illustrated in Figure 6. It shows
that the simple ‘algorithm’ X ′ = −pX p−1 indeed reflects the point X prop-
erly.

Since reflection is a linear operation, and therefore can be extended as an
outermorphism, a more basic approach would have been to reflect a general
plane; then the reflection of the trivector of point X would have followed.

So let us reflect one plane in another. Without loss of generality we can
take the origin on our reflecting plane, so that it takes the convenient form
p = n. Then the reflection of a plane m + δe is

−p (m + δe) p−1 = −n m n−1 − δ p e p−1

= −n m n−1 + δ e. (79)

The normal vector is reflected, but the distance (from our reference point
on p along the new normal) does not change. A parallel plane with m = n
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X

X ′ = −pX p−1

p

O

X

X ′

δn
x

2(δ − x · n) n

−n x n−1

2δn x′

Figure 6: A reflection of a point X into a single plane p (see on edge, in
green) is in PGA simply computed as X ′ = −pX p−1 (left). When worked
out in detail, that simple equation implements some fairly intricate geometry.
The resulting position x′ can be made by adding a reflection −n x n−1 to twice
the support vector δn, or by twice adding, to the point position x, a relative
distance vector (δ − x · n) n. The result is the same, but the algebraic ‘code’
is much more compact in PGA.

becomes−m+δe, so with opposite normal and at the other side of the mirror.
If we conveniently take our arbitrary origin along the line of intersection of
the planes, then δ = 0 and we see that this common line remains invariant
under reflection.

We emphasize that we should not just omit the minus sign in the defini-
tion. If we reflect a plane parallel to the mirroring plane, we would expect its
normal to flip sign, so that ‘back’ and ‘front’ are interchanged after reflection.
With the minus sign as indicated, this is precisely what happens:

p 7→ − p p p−1 = −p. (80)

And of course a plane p′ perpendicular to the mirror (so with p′ · p = 0)
retains its normal, as it should: −p p′ p−1 = p p−1 p′ = p′.

Many other sources on PGA unfortunately tend to neglect this sign in the
basic projection (perhaps because of the projective origins of PGA’s use of the
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Figure 7: Left: the red plane is reflected in the green plane, to produce the
blue plane. Right: in oriented geometry, the oriented red plane, with normal
vectors denoting its outside ‘front’, reflects to become the oriented blue plane.
The orientation of the green mirror is irrelevant in the reflection formula, and
not indicated.

vanishing elements?). This is a pity, since with just a bit more care we obtain
a richer and more usefully consistent oriented geometry. As we remarked
before, you may be interested only in results modulo a positive scale factor
– then you can use p̃ = p instead of p−1, to save some computational effort.
But do not get into the habit of leaving out the minus sign in equations like
eq.(80).

For completeness, let us check that the vanishing elements work as ex-
pected under reflection. First, the vanishing plane e (the plane at infinity)
cannot be used to perform a reflection X 7→ eXe−1, since e−1 does not exist
(after all, e2 = 0). Reflecting something finite in the vanishing plane e would
have gotten us beyond infinity, so it makes sense that we cannot. Second, we
can reflect e in the plane p, but the result is e, since −pep−1 = epp−1 = e.
You cannot reflect back from infinity: it is invariant. The element e thus
acts algebraically just as we would have expected geometrically.
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6.3 Reflections in Two Planes

The geometric product of two planes describes a double reflection. Let us
study what form such a product can take. We can take normalized planes
without loss of generality (since in the sandwich product we will use to apply
the result to elements, the inverse that also occurs cancels any scale factor).

p2 p1 = (n2 + δ2e) (n1 + δ1e)

= (n2 · n1) + n2 ∧ n1 + (δ1n2 − δ2n1) ∧ e. (81)

There are some cases:

• Translation: If the planes are parallel, with n1 = n2 = n as common
unit vector, then the above evaluates to the translator

Tt ≡ 1 + (δ1 − δ2)n ∧ e ≡ 1 + et/2, (82)

with t defined as 2(δ2−δ1)n, double the separation vector of the planes.
In the sandwiching with this element Tt, any element translates over
t. Just to show how this produces the prefix operators we have seen
before, let us translate the point at the origin in d-dimensional space,
represented by Id:

(1 + ep/2) Id (1 + pe/2) = (1 + ep/2)
(
Id − p(−1)dIde/2

)
= (1 + ep/2) (1 + ep/2) Id

= (1 + ep) Id, (83)

retrieving the point representation of eq.(13). On the other hand, trans-
lating an origin plane n gives

(1 + ep/2) n (1 + pe/2) = n + ep n/2 + n e/2 + ep n p e/4

= n + (p · n) e (84)

which indeed retrieves the plane representation n+δe, with δ the signed
distance from the origin to the plane along the normal vector n.

A translator can alternatively be made as the ratio of two points, see
Exercise 12.2:10, or of two parallel lines.

• Rotation at the Origin: Planes through the origin are not geo-
metrically special (because the origin is not a geometrically significant

55



point). But let us see what kind of a motion two planes without dis-
tance δi produce:

RφI ≡ p2 p1 = n2 · n1 + n2 ∧ n1 = cos(φ/2)− sin(φ/2) I. (85)

This is a purely Euclidean rotor for the rotation over φ, double the
angle φ/2 between the planes. Note that I2 = −1.

We can decompose I on the coordinate 2-blade basis {e23, e31, e12},
each of which squares to −1, and which have combination properties
like e23e31 = e21 = −e12. In fact, setting i = e23, j = e31, k = e12, the
algebraic properties are isomorphic to those of a quaternion. So the
real 3D rotation operation RφI is algebraically like a quaternion. But
its derivation as the product of two planes feels quite different – and
a lot more real and natural. We did not need to introduce complex
numbers to define it, just ratios of real planes through the origin.

• Rotation around a Line: Rotation around an arbitrary normalized
line L is also possible. To see the simple form it takes, let us construct
it by a translation back to the origin, then a rotation at the origin,
and placing it back again, so making TtRφIT

−1
t . But the bivector I

around which this rotates should of course be parallel to the original
line L. Or conversely, L is the t-translated version of I, so L = Tt IT−1t .
Performing the translation, the resulting operation is effectively the
translated version of the rotor RφI, and can be expressed directly in
terms of the line L as

RφL ≡ cos(φ/2)− sin(φ/2)L. (86)

So in 3D PGA we can simply use a line L to produce a rotation around
it.14 Note that L2 = −1, just as I2 = −1.

This is in fact algebraically isomorphic to how a dual quaternion (or
biquaternion) represents a 3D rotation. It uses elements from the full
2-blade basis {e23, e31, e12, e01, e02, e03} (where we rewrote e as e0 for
symmetry and compactness). The three elements involving e = e0

square to 0, the others square to −1, and their mutual product prop-
erties are precisely right for the dual quaternion functionality (as you
may verify in the Cayley table of Figure 1).

14In the next section, we will dare to rewrite this in exponential form as RφL ≡
exp(−φL/2).
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Dual quaternions therefore do not need to be introduced as doubly mys-
terious entities, over an abstract algebra that contains both three complex
numbers and three dual numbers, somehow magically applicable to 3D mo-
tions. The RφL above is simply a rotation operation around a real line L,
obtainable as the product (or ratio) of two real planes having that line as
their intersection. When such a product of planes is applied in a sandwich
product, it produces a rotation on any element. When the planes are par-
allel, the rotation is around a vanishing line – we would usually call that a
translation. Get real!

6.4 Three Reflections; Point Reflection

This case contains just one extra reflection beyond the previous case, and is
of less interest on a first pass through PGA.

We could study some things like glide motions, and factorize them inge-
niously. In 2D such things have been done in the context of planar symmetry
groups. In 3D, this would produce the crystallographic groups. It is an in-
teresting exercise to rewrite the CGA treatment of crystallographic groups
from [14] into PGA!

There is a special case, though, that deserves attention: if the three
reflecting planes are perpendicular, their geometric product is identical to
their outer product. Therefore this is a reflection in a point. Devices with
such three orthogonal planes are called retroreflectors - Apollo 11 put one on
the Moon, to determine its distance by bouncing laser rays off it, from the
Earth.

We can most easily study the point reflection at the origin, for the point
O = I3. Then a general blade of the form X = TX + ePX reflects as

X 7→ −I3X Ĩ3

= −I3 (TX + ePX) Ĩ3

= −TX + ePX

= (−1) (TX − ePX). (87)

By factoring out the scaling by −1, we see that the positional aspect has
changed sign: so the result is a similar blade, but at the opposite side of O,
and in opposite direction. We also see that the point reflection is a way of
producing points of negative weight: for instance, O reflected in O gives −O.
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In 2D PGA, a point reflection would be produced by its 2-blade points,
such as the point at the origin I1 = e1 e2. Since this is even, the reflection
formula becomes X 7→ I2X Ĩ2 (no minus!), which for a blade X = TX+ePX
produces T̂X +e P̂X . Since for a blade the grades of tangential and positional
aspect differ by 1, this again results in a reversal of position relative to the
reflection point. An overall sign reversal only happens for vectors of he 2D
PGA, i.e., the 2D lines. This all makes sense, since in 2D a point reflection
is just a rotation over π.

6.5 Four Reflections: General Euclidean Motions
(Oh and Incidentally Dual Quaternions)

According to Cartan-Dieudonné, in the 4D representational space of 3D
PGA, four reflections will generate the most general orthogonal transfor-
mation. So using the GA representation, the product of four general plane
vectors should produce a versor for the most general rigid body motion. We
can rearrange these terms in different ways. In the usual classical represen-
tation when using homogeneous coordinates, one typically views the general
motion as a rotation at the origin followed by a translation. In PGA, this
would be (reading right to left) a factorization in terms of two planes inter-
secting in a line through the origin, followed by two planes intersecting in a
vanishing line.

(
(
t + e/2) t

) (
n2 n1

)
∝ (1 + et/2) (cos(φ/2)− sin(φ/2) I) (88)

with φI the bivector angle from n1 to n2. The final form of representation
is unique, though the four vector factors can be chosen with quite some
leeway (as long as they produce the same φI and t). The element we have
constructed is a rigid body motion versor, often called a motor.

But we have just seen how we perform rotations around a general line L, so
rotations at the origin are no longer as special as they are in the classical view
originating in linear algebra. Therefore we could also characterize the general
motion as a rotation around a general line L followed by a translation in the
direction of that line (this is in fact Chasles’ theorem on decomposition of 3D
Euclidean motions). The former is the operation RφL, the latter translation
effectively ‘rotates’ around the vanishing line LI, so we could denote it as
RδLI (we will see the exact reason behind this notation in Section 7). Then
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the general motor is represented as the product

RδLI RφL = RφLRδLI . (89)

We can use either order, since the two operations commute. This is a natural
parametrization of a general motor: by one normalized oriented line L, an
oriented angle φ and an oriented distance δ. It will take an even more conve-
nient form in the exponential representation, in Section 7. This combination
generates a general element on the basis {1, e23, e31, e12, e01, e02, e03, e0123},
with three basis bivector elements squaring to −1, and three squaring to 0.
They are, again, dual quaternions, but now much less mysterious as ‘real
screws’.

6.6 The PGA Square Root of a Motor

Motors can be defined as the ratio of a (normalized) target blade B and
a (normalized) start element blade A (obviously of the same grade), so as
B/A – or as products of such ratios. (This uses the division by a blade,

which equals multiplication by its inverse A−1 = Ã/(AÃ); for a unit blade
therefore simply equal to its reverse.) However, B/A is not the motor that
can be used in sandwiching to turn A into B, since it moves over twice the
required transformation. This deficiency is easily seen (taking normalized
blades for convenience): (BA−1)A(AB−1) = BAB−1 6= B.

To move A to become B, we actually need V =
√
B/A, as a sketchy but

plausible computation shows:
√
BA−1A

√
BA−1 −1 =

√
BA−1A

√
A−1B = B.

(We can later improve on this derivation when we have the exponential and
logarithm of a motor, but this will do for now.) Therefore we need the
capability to take the square root of a motor.

In PGA, the square root of a normalized motor M (i.e., a motor that

satisfies M M̃ = 1) is

square root of motor M :
√
M =

1 +M√
2(1 + 〈M〉)

(
1− 〈M〉4

2(1 + 〈M〉)

)
,

(90)
where 〈M〉 denotes the scalar part of M , and 〈M〉4 the 4-vector part. This
was derived in [13] on CGA’s roots; but PGA’s are the same since it is a
subalgebra of CGA. You may verify eq.(90) directly, by squaring and using

the normalization condition M M̃ = 1 to rearrange terms.
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The case of M = −1 is excluded, but this is not a problem geometrically:
since the action of M and −M is the same we lose no significant meaning by
demanding, for instance, 〈M〉 ≥ 0 before applying the square root formula.

Apart from a scalar normalization eq.(90) is in essence

√
M ∝ (1 +M) (1 + 〈M〉 − 1

2
〈M〉4), (91)

which may be more efficient in applications where positive weighting factors
are not of interest. You would then use the reverse of this motor

√
M at the

right hand side of the sandwiching – it is obtained by replacing M by M̃ in
the first factor.

We use the term simple motor for a motor that has no grade 4 part. It
is typically made as the ratio of two vectors. In the exponential form we
will treat later, they are characterized as the exponential of a 2-blade (as
opposed to a 2-vector). Because of the lack of a grade-4 part, we have for
simple motors

square root of simple motor:
√
M =

1 +M√
2(1 + 〈M〉)

∝ 1 +M. (92)

In 2D PGA, all motors are simple (there is literally no space for them not to
be!), so this square root formula applies there universally. In spaces of more
than 5 dimensions, terms of grade 6 would appear and one would need to
generalize the square root of eq.(90). But for now, we will not go there.

Having square roots of motors is not only required for determining the
correct motor from a blade ratio; it is also convenient to have when interpo-
lating motions. Each motion can be halved by its square root, and repeated
halving gives a simple form of interpolation by subdivision. A more general
interpolation, employing n-th roots, can be performed after we have deter-
mined motor logarithms in Section 7.3.

6.7 Example: Universal Motors

As a simple demonstration of the universality of PGA when acting on geo-
metric elements, consider Figure 8. It contains a green triangle T with three
vertices, the trivector points T1, T2 and T3. There is a yellow plane p, con-
structed from a point Q and a normal vector n as p = (n · Q)/Q. A red
line L (normalized) is running in direction u, so it can be constructed from
a point on it and the vanishing point euI3 (as in eq.(38)).
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Figure 8: A simple example of PGA versors in action, in a GAviewer visu-
alization.

The green triangle is rotated around line L by a rotation motor R =
exp(−φL/2). In PGA, this is done by rotating each of its points Ti to be-
come RTi/R, and recomposing the result. You may simply overload R to
work on the triangle structure specifying its vertices (PGA trivectors) and
edges (PGA 2-blades), so we may denote this as RT/R. We have interpo-
lated the rotation using as a motor the n-th root of R, i.e.,

n√
R = R1/n =

exp(log(R)/n), using the logarithm that will be treated in Section 7.3 - al-
though you could also use repeated square roots to iteratively halve the
motion.

The plane p is capable of reflecting the green triangle T to become the
blue triangle −p T/p. In fact, we can reflect all green triangles in this manner.
The blue triangle has then effectively been rotated around the reflected line
−pL/p, by the motor exp(−φ(−pL/p)/2) = −p (exp(−φL/2))/p = −pR/p.
So motors obey the same versor transformation rules as geometrical primi-
tives. The motor of a reflection is a reflection of the motor. With a suitable
data structure, we can therefore apply the sandwiching operation by p simply
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to all elements ‘above’ the plane, to get the elements ‘below’ - even including
the counterrotation that acts there.

You can view this setup flexibly in 3D and play with it (by changing the
defining geometrical parameters) in ganja at https://enkimute.github.

io/ganja.js/examples/coffeeshop.html#chapter11_motors. Since the
code is javascript, you can modify the scene, confirming how easy it is to
transform in PGA.

6.8 Example: Reconstructing a Motor
from Exact Point Correspondences

Let us assume that we have three normalized labeled points A, B, C (not
on a line), and that we know where an exact motor sends each of them, to
A′, B′, C ′, with the same weights. We would like to reconstruct that motor.
Here is how we could proceed:

1. First align A to A′. This is done by the motor

VA =
√
A′/A, (93)

which thus achieves A′ = VAA ṼA (it is of course a translation, see Ex-
ercise 12.2:10). When we apply this motor to B′ and C ′, they have be-
come slightly better aligned, and now only the new relative positions to
A′ matter. The new subproblem thus involves aligning BA ≡ VAB ṼA
with B′ and CA ≡ VAC ṼA with C ′.

2. Now align BA with B′ while preserving the result on A. That requires
an additional motor that aligns the line A′ ∨BA with the line A′ ∨B′,
through

VB =
√

(A′ ∨B′)/(A′ ∨BA). (94)

This motor VB leaves A′ invariant, and rotates BA into B′.

The total motor so far is then VB VA, which aligns both A and B
to A′ and B′, and transforms C to CBA ≡ VB VAC ṼA ṼB (or CA to

CBA ≡ VB CA ṼB).

3. Finally, align CBA to C ′ by aligning the plane A′ ∨ B′ ∨ CBA with
A′ ∨B′ ∨ C ′, keeping the line A′ ∨B′ and the point A′ invariant. This
requires the motor

VC =
√

(A′ ∨B′ ∨ C ′)/(A′ ∨B′ ∨ CBA). (95)
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Figure 9: A screenshot of the motor estimation algorithm implemented in
ganja.

The motor VC leaves both A′ and B′ invariant, and rotates CBA to C ′

around the line A′ ∨B′.

4. The total alignment motor is now V = VC VB VA. Done!

At each step, only one new element needs to be aligned; by decomposing
the alignment blade as a geometric product of orthogonal factors (which can
always be done) you can show that the ratio boils down to a ratio of vectors.
Therefore the motors involved in each step are simple motors: pure trans-
lations and pure rotations around an axis (no screw motions). The square
root of each of the normalized motors M is thus simply the normalization of
(1 +M).

A free sample of this algorithm may be found in the ganja coffeeshop:
https://enkimute.github.io/ganja.js/examples/coffeeshop.html#chapter11_

motor_reconstruction. Figure 9 shows a screenshot.
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Very similar algorithms to the above can be designed to find the motor
that transforms three corresponding plane pairs (easy), or three line pairs
(harder!).15 See our structural exercise 12.2:11.

6.9 Summary

General Euclidean transformations can be generated by multiple reflections
in planes. In PGA this produces versors, the usual geometric algebra of
orthogonal transformations.

We explicitly derived the versors for some of the basic motions, and con-
nected those real constructions briefly to the complex encoding by quater-
nions or dual quaternions which is more commonly taught. Incidentally we
saw that in PGA a pure rotation is a rotation around any line, rather than
around a line through the origin (as it is in linear algebra).

We showed how versors are applied universality to all elements, primitives
and operators alike, by a simple sandwiching construction eq.(77). This
enormously simplifies and reduces implementation code.

Versors are easy to make from elements by geometric product ratios.
But the ratio of elements does not quite give the versor transforming one to
the other, you need to take a square root. So we exposed the square root
formula for PGA in eq.(90), including the simplified form eq.(91) it takes
when magnitudes are less important in your application.

15In [15], a structurally identical algorithm was used to perform alignment of directions
in 3D (so using only the rotors in the 3D GA of Chapter 10 in [1]). It resulted in an
efficient formula that was directly usable in the more traditional quaternion formulation,
and that appeared to be new. The geometrical approach, viewing a quaternion as the
ratio of two planes, paid off! It may be possible to derive a similar closed form expression
for our final result, giving a compact formula for the dual quaternion that aligns the triple
of points (though it appears at first try that it has too many terms to be memorable).
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7 The Exponential Representation

We have constructed the rigid body motions as products of planes, or ratios
of flats. But in practice it is often more convenient to synthesize them as
exponentials, since that parametrizes them straightaway by geometrically
relevant elements: direction of motion for a translation, axis and angle for a
rotation, and screw and pitch for a general rigid body motion. This approach
works for the ‘proper’ motions, not for the reflections. So in this section our
versor contains an even number of terms, and is thus an even multi-vector,
a member of the even subalgebra R+

3,0,1 of 3D PGA.

7.1 Exponentiation of Invariants Gives Motions

We have seen how a rotation versor can be formed as the product of two
reflection planes V = p2 p1, and that it rotates around their common line.
That line is represented as L = p1∧p2, and it would be nice if we could write
the versor in terms of it: for many pairs of planes could have that unique
line L in common, and we prefer our parametrizations as unambiguous as
possible. In geometric algebra in general, we can perform exponentiation (as
explained in Chapter 7 of [1]) of bivectors to produce even versors. (This is
intimately related to the classical description of motions through their Lie
algebra, but we will just absorb this rather than spell it out, referring to
e.g., [16] for details.)

We will employ the standard notation of even versor application, in which
a normalized bivector B produces a versor Vτ = exp(−τ B/2). (This versor

is even a rotor, since V Ṽ = 1, and therefore V −1 = Ṽ .) This versor Vτ is
applied to an arbitrary element X by a sandwich product, to produce an
orbit parametrized by τ as

Xτ = Vτ X V −1τ = e−τB/2X eτB/2. (96)

As we have seen when constructing versors by multiple reflections, such a
transformation is linear in X, and it preserves grades. Moreover, versors
transform the geometric product covariantly:

V (a b)V −1 = (V a V −1) (V b V −1), (97)

and since outer and inner products are linear combinations of geometric prod-
ucts, it does the same for them. Products involving duality (like the join)
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also transform covariantly under even versors, since they have determinant
+1, and therefore do not affect the sign of the pseudoscalar. The sandwich-
ing product is thus an obviously structure-preserving way of transforming
elements.

Let us show such exponentiation for rotations around the line L = p1∧p2.
We normalize L such that ‖L‖ = 1. Such a line squares to L2 = −1. This
is most easily seen if we construct it as the intersection of two orthogonal
normalized planes (so p21 = p22 = 1 and p1 · p2 = 0). Then p1∧ p2 = p1 p2, and

L2 = (p1∧p2) (p1∧p2) = p1 p2 p1 p2 = −p1 p1 p2 p2 = −(p1)
2 (p2)

2 = −1. (98)

Therefore using L in an exponentiation produces trigonometric functions, in
the usual way:

exp(−φL/2) = 1− 1
1!
φL/2 + 1

2!
(φL/2)2 − 1

3!
(φL/2)3 + · · ·

= cos(φ/2)− sin(φ/2)L. (99)

Note that the line L remains invariant under this operation, and that the
motor is the exponential of the invariant. That turns out to be very useful
general principle to construct specific motors!

Translation versors (of the form of eq.(82)) involve direction elements like
et, which can be seen as a vanishing line, the locations where the plane t
(with normal vector t) meets the vanishing plane e. Such elements square to
zero, since e2 = 0:

(et)2 = e t e t = −t2 e2 = 0. (100)

Therefore we can also make translation versors by exponentiation

exp(et/2) = 1 + 1
1
et/2 + 1

2
(et/2)2 + · · ·

= 1 + et/2, (101)

completely conforming to the form they took when constructed from reflec-
tion in two parallel planes in eq.(82).

When translating orthogonally to a plane p = n + δe with normal vector
n, the vanishing line en = ep remains invariant. And the corresponding
translation operator is indeed the exponential of this invariant: exp(ep).

Composing a general rigid body motion from an origin rotation (with
L = I = e1 e2 on an orthonormal basis) followed by a translation yields a
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versor that is commonly called a motor:

M = exp(et/2) exp(−φI/2)

= (1 + et/2) (cos(φ/2)− sin(φ/2) I)

= cos(φ/2)− sin(φ/2) I + et/2 cos(φ/2)− sin(φ/2) e t I/2. (102)

A general motor M therefore contains grades 0, 2 and 4. Note that you
never have to write out such expressions explicitly, we just worked this out
in components to give you a feeling for the internal structure. But we have
already mentioned that there is a better parametrization of motors, according
to Chasles’ decomposition, in eq.(89): a rotation around a line, combined
with a translation along that same line. In exponential form, that becomes

M = RδLI RφL = exp(δLI/2) exp(−φL/2) = exp(−φL/2 + δLI/2), (103)

where the combination into a single exponent is permitted since the L and
LI commute. Both the Euclidean line L and the vanishing line LI are
invariant under this rotor M , so this is again of the form ‘exponential of the
invariant’. The ratio δ/φ is the pitch of the resulting screw motion, indicating
the amount of translation per turn.

7.2 Child’s Play

Let us enjoy an intuitive example showing how the continuity of our expe-
rience in rotation and translation is faithfully represented in PGA, and how
natural it is to exponentiate geometrically invariant elements to produce mo-
tors.

Mia-Lou wants to ride her tricycle. She starts at the origin, facing in
the e1 direction. Let us denote the plane perpendicular to the ground plane
e3 and containing her rear axle by r, and the plane perpendicular to the
ground plane containing her front axle by f . The latter plane depends on
her steering angle φ, so let us denote it as f(φ). With the trike assumed to
be of unit length, we have in coordinates:

r = e1 and f(φ) = (e1 cosφ+ e2 sinφ) + e cosφ. (104)

The two planes meet in r∧f(φ), and this is the center of her motion: it stays
invariant as she moves with constant steering angle φ. Therefore Mia-Lou’s
motor is a power of:

exp(r ∧ f(φ)) = exp(e1e2 sinφ+ e1e cosφ). (105)
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center

orbit

r = e1
f(φ)

O

Figure 10: Geometry and orbits of a tricycle. When moved one time-unit
under the motor Mφ = exp(r ∧ f(φ)/2), the endpoints MφOM̃φ, for various
steering angles φ, appear to form a cardioid.

We will not normalize the bivector argument and then introduce an angle
measure, but rather take the magnitude of the meet as the amount of motion
(which can be further parametrized by a time t, as in exp(r∧f(φ)t), to travel
fractional amounts).

It is clear from this formulation that there are no discontinuities in the
motor. When φ = 0, the motor is exp(e1e), a purely translational motion
over 2 units of length. The invariant center is now a vanishing point (at
infinite distance to her left or to her right). As φ increases, the motion
becomes rotational around a finite turning center at her left, with an ever
decreasing turning radius. Then, when Mia-Lou has her handlebars at an
angle of π/2, the motion is purely rotational around the pivot point on the
rear axle, by motor exp(e1e2) over an angle of 2 radians. If we motorize her
front wheel (so that she can even move when the angle exceeds π/2), she
moves backwards around a turning point at her right. A 180-degree turn
of the handlebars has her driving straight back to her father, by the motor
exp(−e1e).

And the same sequence applies to her steering to the right, by negative
angles φ. Starting from steering straight ahead, the center of rotation thus
moves smoothly from infinity to either her left or right, and even to the point
on the rear axle for a pure rotation when φ = π/2. At no point is there a
need for a conditional statement to switch motion state – the one motor
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exp(r ∧ f(φ)) covers all motions without discontinuity.
Figure 10 shows a screenshot of a demo of Mia-Lou’s trip. It is a nice

geometrical fact that a unit motion in the motor exp(r ∧ f(φ)) moves the
original midpoint of the rear axle to an endpoint that lies on a cardioid. You
might try to prove that!

You can play with this demo in ganja at the link https://enkimute.

github.io/ganja.js/examples/coffeeshop.html#chapter11_tricycle&fullscreen.
Wait half a minute for it to load; the slider to adjust the steering angle is at
the top.

7.3 The PGA Motor Logarithm

As eq.(103) shows, a general motor is the exponential of a bivector. If we
want to interpolate the motion, we need that bivector; to retrieve it, given
the motor, we require a logarithm. For the non-commuting elements of PGA,
this requires some care. First, since a versor V and its negative −V have the
same effect, let us assume that our versors have a non-negative scalar part;
it makes the essence of the logarithms simpler to express.16

A simple motor is the exponential of a 2-blade. The logarithm of a simple
motor of the form exp(2-blade) is easy to extract by the considering its scalar
and 2-blade components: it is proportional to the 2-blade by a factor that
can be deduced from the magnitudes of the terms. In PGA, there are two
cases:

• R = exp(B) with B2 < 0 (rotation).
Then define ‖B‖ =

√
−B2, and write B = ‖B‖B̌, so that B̌2 = −1.

Expand the motor to R = cos(‖B‖) + sin(‖B‖)B̌ and it is then clear
that the principal logarithm is, in terms of the k-grade selection oper-
ator 〈 〉k,

log(R) = atan
(‖〈R〉2‖
〈R〉0

) 〈R〉2
‖〈R〉2‖

≡ atan
(〈R〉2
〈R〉0

)
, (106)

where the second rewriting effectively defines a GA atan function on
bivector arguments, to return a bivector. In this case, log(R) is pro-
portional to the invariant rotation axis.

16There are some more advanced reasons to discriminate between V and −V , in certain
applications of multiple connected objects, but we will not use that in this text. Consult
Chapter 7 of [1] if you are interested.
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• T = exp(B) with B2 = 0 (translation).
We can expand this motor to T = 1 +B, so the logarithm is simply

log(T ) = 〈T 〉2 = T − 1. (107)

This logarithm is proportional to the invariant vanishing line.

But for a general motor, of the form exp(bivector), the basic puzzle is that
the individual components of a general bivector do not commute; therefore
we cannot write the exponential of their sum as a sum of exponentials (which
would give a product of simple motors and make their logarithms easy). The
solution is to write a general bivector as the sum of two commuting 2-blades;
then we can perform the split, and are left with a product of commuting
simple motors. We have already performed this split in Section 5.6, but we
are only half done: we should retrieve the 2-blade parts not from B, but from
V = exp(B).

Studying the expansion of the motor in factorized form in terms of the
unit lines L and LI shows how we can proceed:

V = exp(B)

= exp(αL+ βLI)

= exp(αL) exp(βLI)

= (cosα + sinαL) (1 + βLI)

= cosα + sinαL+ β cosαLI − β sinα I
= cosα

(
1 + tanαL+ β LI − β tanα I

)
. (108)

In this expansion, almost all information for the logarithm is contained in the
bivector part of the versor, especially since we can retrieve the coefficients of
its decomposition into commuting 2-blades by eq.(69). We then merely apply
some function to the weights to retrieve the actual parameters of rotation
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and translation. This leads to the motor logarithm

W = 〈V 〉2/〈V 〉0, (109)

α = atan
(√

W · W̃
)
, (110)

βI =
W ∧ W̃

2
√
W · W̃

, (111)

L =
W√
W · W̃

(
1− 1

2

W ∧ W̃
W · W̃

)
, (112)

log(V ) =
(
α + βI

)
L. (113)

Again, this does not work when W 2 = 〈V 〉22 = 0, but we have seen that the
logarithm in that purely translational case is extremely simple, see eq.(107).
It also fails when 〈V 〉0 = 0, but then α = π/2 and the rest of the formulas
can use W = V . The result of the logarithm is now the sum of the invariant
rotation axis and the invariant vanishing line (or ‘translation axis’).

In 2D PGA, motors are simpler, because they are always already the
exponent of a 2-blade (since in the 3-dimensional representation space, all
2-vectors are 2-blades). In 2D PGA the logarithm thus simplifies to

W = 〈V 〉2/〈V 〉0 and log(V ) = atan
(√

W · W̃
) W√

W · W̃
, (114)

except when W · W̃ = 0 (the translation case); then log(V ) = V − 1.
When extracting logarithms, please realize that a versor is always of the

form V = exp(−B/2), so that retrieval of the actual generating B (if that is
what you are looking for) requires B = −2 log(V ).

7.4 Summary

The exponential form of an even versor allows direct and unique parametriza-
tion of an elementary (screw) motion by its invariant bivectors (basically, the
lines that are not affected).

Conversely, retrieving the invariants requires a logarithm. We derived
that in some detail, to a fairly compact final result eq.(109)-eq.(113) The
elementary motion can then be interpolated.
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8 Oriented Euclidean Geometry

The expressions we compute are not only purely geometrically interpretable
in terms of positions and attitudes, but they also have magnitudes and signs.
In a purely projective approach to PGA, we would neglect those; but they
turn out to give useful quantitative information, and also permit us to de-
fine ‘inside/outside’ and chirality (‘handedness’) consistently. We have so
far drawn little attention to this possibility, since we wanted to show the
geometry first.

In image synthesis applications, the neglect of positive weighting fac-
tors usually makes good sense: it does not change where you draw things.
However, the signs of products consistently propagate ‘direction of travel’,
‘reflection from the outside’, ‘consistent normal directions’, et cetera, and
therefore should be kept for interpretation and generation.

In 3D scene analysis, on the other hand, the numerical factors are highly
indicative of quantitative aspects of the scene, related to useful measures
and stability: ‘do these three points join to form a reliable plane’, ‘is this
intersection point sensitive to perturbation’, etc.

In all we have done so far, we carefully kept the signs and weighting
factors. We now should provide some ways to interpret them. You will find
that some of these meanings sound annoyingly hard to remember; we are
apparently not too naturally sensitive to such aspects of geometry. But if
you want to compute with them in a consistent manner, geometric algebra
gives you the tools.

Whichever field you are in, get into the good habit of not being sloppy
with the signs, even if you do decide to ignore the magnitudes. Signs give you
an oriented geometry in which you will not need to reconstruct orientations
afterwards, but can carry them along consistently in your computations.

8.1 Ordering

Some of the signs we will obtain are not so much due to the orientations of
the objects we combine, but to the order in which we combine them. Let us
get that out of the way first, notably for the meet and join operations.

• Ordering the meet.
Since the meet is an outer product, the effect of changing the order of
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two arguments A and B with grades a and b, respectively, is

A ∧B = (−1)abB ∧ A. (115)

Thus a line that is the meet of two planes p1 and p2 obtains the opposite
orientation if we compute it as the meet of p2 and p1. Our eq.(9) shows
that the direction vector of the line p1 ∧ p2 is the 3D cross product
n1×n2 of the normal vectors of the planes, in that order (for our right-
handed coordinate system). The magnitude is the sine of the angle
between the normal vectors, which is indeed an odd function, so as the
planes ‘hinge across’ each other, the sign changes.

• Ordering the join.
The sign incurred in swapping the arguments of the join (let us call it
the ‘swap sign’) depends on the dimension of the space it is computed
in. For PGA, that space is (d+ 1)-dimensional, and we have

A ∨B = (−1)(d+1−a)(d+1−b)B ∨ A. (116)

Thus a line that is the join of two points P and Q (which are d-blades
of PGA) satisfies P ∨ Q = −Q ∨ P , in any dimension. A line can
thus be given an orientation by joining points in a chosen order. But
beware: those points themselves should be translated versions of the
point at the origin Id, i.e., they should be positively proportional to the
Euclidean pseudoscalar that was chosen for the space. Since negative
points can result from operations (such as reflection or meet), this may
be an issue in your subsequent constructions.

Looking at these swapping signs, we thus find that in 3D PGA (so for d = 3),
the swap signs of meet and join are the same. Note that any combination
involving a 3D line L (which is a 2-blade) will be symmetric:

A ∧ L = L ∧ A and A ∨ L = L ∨ A, for a line L. (117)

For quick reference, we show the swap signs for meet and join in Table 3.
Where these signs are negative, we have to be careful in how we combine the
elements, since the signs we obtain will be partly non-geometrical, merely
caused by the way we phrased the question of ‘how they met’, and ‘when they
joined’. That does not make the answers useless, but definitely potentially
confusing. In 3D the rule is: only if both arguments are odd, there will be a
minus sign in the swapping for both join and meet.
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∧, ∨ 0 1 2 3 4
0 + + + + +
1 + − + − +
2 + + + + +
3 + − + − +
4 + + + + +

∨2D 0 1 2 3
0 − + − +
1 + + + +
2 − + − +
3 + + + +

Table 3: Signs incurred when swapping the arguments of n-D meet and 3D
join, and of the 2D join (denoted ∨2D). The signs for the 2D meet are as
for the 3D meet.

8.2 A Line and a Plane Meet

When (in 3D) a line L and a plane p meet in a point, the sign of their
meet is independent of their order. So that sign has a geometric significance
independent of convention. Moreover, though the geometric location of the
common point depends on the precise location of line and plane, both the
scalar factor (containing its ‘strength’ of meeting) and its sign (denoting the
‘kind’ of incidence) do not depend on their location, but only on their relative
attitude. We can therefore most easily acquire an intuition of the sign and
magnitude of the meet by simply computing how it looks at the origin.

So we calculate the meet of a line with direction u through the origin
(which is L = uI3), with a plane with normal n through the origin (which is
p = n). Let us take both as being normalized, so u2 = 1 and n2 = 1. Then
we compute

p ∧ L = n ∧ (uI3) = (n · u) I3. = (n · u)O, (118)

where O = I3 is the normalized point at the intersection point, in this case
the origin. We thus find that there is a ‘meeting strength’ equal to the cosine
between line direction u and the plane normal n: the meet is strongest when
the line is perpendicular to the plane, and zero when the line lies within the
plane (which is a degenerate situation for this linearized form of intersec-
tion). We also see that the intersection point is positively proportional to
O = I3 when the line direction and plane normal are in similar directions
(positive cosine), and negative when opposite. The distinction is required
for applications like ray tracing, where the plane would denote a locally flat
piece of boundary and one would want to know whether an incoming ray
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could validly hit it from the outside, or invalidly from the inside.
So this is how negative points get into our algebra: the signs indicate

how the points were made. Be aware of such possible signs in subsequent
computations with those points; you may want to normalize them to positive
before you use them, so that you can keep the orientations of composite
objects clear in their meaning.

The sign is unavoidable, since changing the order of the arguments has no
effect. So if we would prefer to have a convention in which the intersection
point of ray coming in from the outside of a planar boundary is positive (i.e.,
to be a translated positive multiple of O = I3), then we would have to enforce
an encoding convention in which n is the ‘inside pointing normal’.

8.3 The Join of Two Points

As we saw above, the join of two points is a line whose orientation (the sign
of its direction vector) depends on their order, in any dimension, and this is
precisely as we would like it. The line determined by P and Q, which is P∨Q,
should have the opposite sign of the line Q ∨ P determined by Q and P . In
this case, the magnitude of the join of two normalized points is proportional
to their distance (as we compute below); including the orientation, we could
say it is their signed distance.

We repeat the explicit expression for the line P ∨Q of eq.(37):

P ∨Q = (q− p) I3 + e
(
1
2
(p + q) ∧ (q− p)

)
I3. (119)

For simplicity (and without loss of generality due to the translation covari-
ance of the join in PGA), let us take p = 0 so that P = O = I3:

O ∨Q = q I3. (120)

This is a line through the origin with direction vector q. To be precise, the
resulting line has the same direction as q, with a magnitude equal to the
distance of O to Q. So the 2-blade O ∨ Q represents the line from O to Q,
with a ‘strength’ (or ‘velocity’) ‖q‖.

The pleasant result that the reading order is the order of connecting-the-
dots is due to our non-standard form of the Common Factor Axiom eq.(25).
The desirability of this ordering was our reason for deviating from [8], by
effectively swapping the order of arguments relative to their join.
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8.4 The Meet of Two Planes

The meet of two planes also results in a line, this time oriented in the way
we might expect in a space with right-handed pseudoscalar. Again the order
matters: since both planes are odd, there is a swap sign. Let us check the
result at the origin, with two planes p1 = n1 and p2 = n2, both normalized.
Then

p1 ∧ p2 = n1 ∧ n2 =
(
(n1 ∧ n2) I−13

)
I3 = (n1 × n2) I3, (121)

with × the 3D cross product. The final rewriting was our way of describing
the direction of a line by means of a Euclidean vector, as explained in eq.(9).

8.5 The Meet of Plane and Point: Inside/Outside

When a plane and a point meet, the result is a PGA 4-vector, as we saw in
Section 2.7. Yes, even a point not on the plane has a meet with it; for the
meet is not a geometric intersection of point sets.

For simplicity, let us first do the case where P = O, the point at the
origin. There is a swapping sign (both are odd) so the order matters.

p ∧O = (n + δe) ∧ I3 = δ e I3 = δ I. (122)

The plane representation n + δe is of a plane with normal vector n and a
support vector of δn, in the positive n-direction; thus the point at location
δn is on the plane.

We now find that we can retrieve δ as the strength (or rather, weakness)
of the meet of plane with point O at the origin: it is the proportionality
factor with the pseudoscalar I. We can interpret this factor therefore as the
distance the point O has to travel in the direction of n to become a point on
the plane.

For a plane p and general point X, we get p ∧ X = (δ − n · x) I, and
the interpretation is the same: the factor of the pseudoscalar denotes how
much we should move X to get onto p. If it is positive, X lies on the side of
the plane that n points away from. If we wish to call that positive side the
outside of the planar border, then n should be the ‘inward pointing normal’.

8.6 The Meet of Two Lines: Chirality

The meet of two lines has no swapping sign, and is therefore a geometric
property independent of any convention on ordering (though it will depend
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on the choice of pseudoscalar orientation). It is related to chirality: the ‘sense
of turning’ of one line about the other.

Figure 11: The meet of two lines L = (uI3) + e(p · (uI3)) and M = vI3
−? +

e(q · (vI3)) equals e∧ (q−p)∧u∧v = ed (u∧v). The proportionality factor
which is interpreted as the oriented volume spanned by their direction vectors
and their orthogonal separation vector d. It is independent of the order of
the arguments of the meet. As the lines cross over, or change direction, the
sign of this volume changes; hence it can be used as the relative orientation
of the lines. For the lines in this figure, this chirality is negative (assuming
the usual right-handed space orientation). (This is Figure 11.6 from [1].)

Let us parametrize the lines with direction and location vectors, to cor-
respond more directly to the classical results.

L ∧M =
(
uI3 + e(p · uI3)

)
∧
(
vI3 + e(q · vI3)

)
= e

(
(p · uI3) · v − uI3 · (q ∧ v)

)−?
= e

(
v ∧ p ∧ u + q ∧ v ∧ u

)
I23

= e ∧ (q− p) ∧ u ∧ v

= ed (u ∧ v)

= δ sin(φ) I, (123)
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where we factorized orthogonally by the orthogonal separation vector d ≡(
(q− p) ∧ u ∧ v

)
/(u ∧ v) (from L to M), see Figure 11.

The result of L ∧M is proportional to the pseudoscalar I, by a signed
quantity of which the magnitude is the product of the line separation δ (from
L to M) and the sine of the angle between u and v (from the L-direction
vector u to the M -direction vector v).

That factor (and with it the meet result itself) is therefore an interesting
measure that combines spatial and angular distances: it is zero when the
lines intersect, but also when the lines are parallel (which is of course also
an intersection, in a common vanishing point).

The chirality is the sign of the proportionality factor, which is also the
sign of the scalar (d ∧ u ∧ v)/I3. Thus if we follow line L in its direction u
and then find ourselves moving around line M such that u, v and d form
a frame of the same orientation as I3, we call the chirality positive; and if
not, negative (or zero). Figure 11 shows an example of negative chirality in
a space with right-handed pseudoscalar.

8.7 Summary

In this text we really tried to use the capability of PGA to propagate orienta-
tion signs carefully, since they are so useful in practice. We showed that this
is possible, but it takes some getting used to. To interpret them properly,
we need to distinguish between ‘geometrical signs’ and incidental signs from
construction order. But both are useful tools.

The emphasis on these aspects is rather new. We believe PGA is a good
algebraic framework to encode the oriented projective geometry of Stolfi [17],
and we would expect this field to develop more than we could indicate in this
introductory text.
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9 Projective Duality in PGA

The original meaning of the P in PGA is ‘projective’ [12], since it was derived
in the context of a projectivization of Euclidean space (i.e., adding points at
infinity as regular elements). As usual in a projective approach, there is
a natural duality between points and hyperplanes, between k-blades and
(n − k)-blades. To fully represent this duality relationship, one needs to
maintain both PGA and its dual space (or combine both in one), with both
e and er in their bases – as we temporarily did when motivating the join in
Section 3. In this full space the duality between points and hyperplanes can
be represented naturally; both types of elements are represented distinctly
and explicitly.

When limiting ourselves to only the PGA space spanned by {e, e1, e2, e3}
(as we do in this text to show that a 4D space suffices for Euclidean geom-
etry), a somewhat awkward ‘shadow’ of this full duality remains. We have
avoided its use in this text, since we were able to work well enough with-
out it. Full duality is much nicer, and if you need to maintain both spaces
anyway, you had better use the full 5-dimensional CGA R4,1 and get spheres
and circles and conformal transformations for free (see Chapters 14-16 of [1]).
The 4-dimensional PGA R3,0,1 is a subalgebra of this full CGA R4,1.

But you may encounter the partial duality of PGA in other treatments
and as programming shortcut, so we give a brief introduction to its definition
and usage.

9.1 Complement Duality and Hodge ?

Some authors use a form of duality that is related to the duality relationship
between the PGA of planes and its dual space in which vectors represent
points. A proper way of defining this duality would be projectively [8]. We
could determine, for a blade X, what more we need to span the pseudoscalar
I = e I3 of PGA:

‘complement-dual’ X of X defined through: X ∧X = I. (124)

(This ‘complement-dual’ is my term, to distinguish it from other forms.)
Although mathematically proper, there are two practical problems with this
definition:

• The complement dual is not unique. One can always add an element
X ′ to X for which X ∧X ′ = 0. This reflects the fact that one can set
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up many dual relationships between projective planes and points, all of
which make the incidence relationships of meet and join work. But we
know that we will want to move to Euclidean geometry, so we would
like to select a unique, metric correspondence. Normally one would
do this by additionally demanding X ·X = 0. Unfortunately the null
elements of PGA would still not make that unique, either.

• The complement dual is not linear. When we multiply X by α, we
see that its complement dual X is divided by α. Therefore the dual
of a sum is not the sum of the duals. This is very annoying in metric
applications; we prefer to keep our framework as linear as possible.

So this ‘complement duality’ is not convenient. But we can define a related
form of duality by applying complement-duality to the basis blades, and then
extending that to be linear. This is done by just copying the corresponding
coefficients, using the coefficient of Ei then for Ei. This is the principle
behind the Hodge star operator ?. This construction will be dependent on the
choice of basis, which is unfortunate (and much less satisfying than duality
in CGA!). In a homogeneous model, that basis includes a choice of where
the origin is. So a plane will indeed be dual to a certain point, but always
relative to some chosen origin, and some choice of basis directions. At least
we should choose to make the directional aspect of the duality related to the
usual orthogonality of a Euclidean dual.

In geometric algebra, we can introduce to the Hodge dual more tidily than
via such a kludgy definition on basis elements. We view the Hodge dual as a
refinement of the complement dual eq.(124) to enforce uniqueness, linearity
and Euclidean orthogonality. We do so by replacing the outer product by
a geometric product, and guaranteeing linearity by an appropriate unsigned
scalar factor. Thus our Hodge dual ? is defined for a PGA blade X through

X (?X) = (X X̃) I, (125)

and extended to multivectors by viewing them as sums of blades. Here X is
the Euclidean factor (i.e., non-e factor) of the blade X. In PGA Rd,0,1, we
will use as our pseudoscalar I = e Id.

For an element X that is a Euclidean blade X or of the form eX we thus
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find

?X = X̃ e Id = eX Id (−1)x(x+1)/2 (126)

?(eX) = X̃ Id = X Id (−1)x(x−1)/2 (127)

It is perhaps more consistent to rewrite these duals in terms of the Euclidean
dual X? = XĨd rather than the ‘undual’ XId. In 2D and 3D such a rewrite
produces an extra minus sign, and the result in those dimensions is

2D, 3D PGA: ?X = eX? (−1)(x−1)(x−2)/2 (128)

2D, 3D PGA: ? (eX) = X? (−1)(x+1)(x+2)/2. (129)

For quick reference, in 3D PGA (and 2D PGA) we then have the following
formulas for the blades of various grades (with α a scalar, v a Euclidean
vector, B a Euclidean bivector, T a Euclidean trivector):

?α = −eα? ?eα = −α?
?v = ev? ?ev = −v?

?B = eB? ?eB = B?

?T = −eT? ?eT = T?

(130)

Since dualization is effectively accessing coordinates from a different basis
element, with possibly a sign, it is computationally a trivial operation, and
very fast. When you are implementing this Hodge dual using a basis, you
can even cleverly choose your basis elements to group the signs in blocks of
four, see Table 4. This leads to a fast GPU implementation of duality.

Undualization is a bit subtle, for when we apply the Hodge dual twice, a
sign may appear. From the above (and some sign-chasing), the double Hodge
dual of any element X in Rd,0,1 obtains the sign of

?(?X) = (−1)grade(X) dX, (131)

so that we may define a Hodge undualization ?−1 by

?−1(X) = (−1)grade(X) d ? X, (132)

No sign in even-D, but in odd-D (including 3D!) we have ?−1(X) = ?X̂.
The resulting Hodge dual is an orthogonally selected form of complement-

duality. It implicitly introduces a Euclidean duality in which dual elements
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?1 = e0123 ?e0123 = 1
?e0 = e123 ?e123 = −e0

?e1 = e032 ?e032 = −e1

?e2 = e013 ?e013 = −e2

?e3 = e021 ?e021 = −e3

?e01 = e23 ?e23 = e01

?e02 = e31 ?e31 = e02

?e03 = e12 ?e12 = e03

Table 4: Complement-duality (the Hodge star) on the basis blades of 3D PGA
relative to pseudoscalar I = e ∧ e1 ∧ e2 ∧ e3 ≡ e0123. The particular basis
elements are chosen to make sign patterns as symmetric as possible in blocks
of 4, to enable fast implementation using standard 4D computer graphics
GPU hardware. Dualization simply becomes transfer of coordinates to a dual
basis.

are indeed orthogonal in the usual sense. Defining a Hodge dual is just a dif-
ferent (and rather implicit) way of defining a metric. In fact, Browne [8] in-
troduces the basic operations in the order: meet then join then complement-
duality then interior product based on the complement. In this way, he ends
up with a Euclidean dot product in what started as a metric-free Grassmann
algebra, getting rather close to geometric algebra at the end of his Volume
1.17

I have chosen here for the order: meet, metric complement, then join in
terms of Euclidean complement. This approach no longer appears to need a
non-Euclidean form of duality explicitly - though in an essentially projective
approach that motivates PGA (partly), projective duality between points
and (hyper-)planes always has a barely hidden presence, and can be a source
of inspiration.

9.2 The Join by Hodge Duals

We derived the join and its signs from a careful consideration of the external
dual space of PGA in Section 3.2. Having an ‘internal’ form of duality (the
Hodge dual) suggests that we might be able to write the join in PGA rather

17For those interested, an external appendix [9] connects our text to that of Browne’s
Grassmann Algebra approach.
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more simply. And indeed, by carefully chasing the signs of the Hodge duals,
we can show that

A ∨B = ?−1(?B ∧ ?A). (133)

Note the swapping of the arguments! The proof may be found in exer-
cise 12.2:12.

When you implement the Hodge dual as the coordinate manipulation
indicated above, this dual outer product formula for the join leads to the
fastest code. In ganja, the join is implemented in this manner at compile
time, as one of the basic operations of PGA.

Example: Hodge-based join of two points.
With P = I3 + ep I3 and Q = I3 + eq2 I3, we find ?P = −e+ p
and ?Q = −e+ q. Then

P ∨Q = ?−1(?Q ∧ ?P )

= ?(?Q̂ ∧ ?P̂ )

= ?
(
e(q− p) + q ∧ p

)
= −(q− p)? + e(q ∧ p)?

= (q− p) I3 + e (p ∧ q) I3. (134)

This indeed agrees with the computation of this join P ∨ Q in
eq.(37).

9.3 Summary

Duality is a fundamental aspect of the geometry of flats (planes, lines, points).
In PGA it is more awkward than we are used to in more balanced geometric
algebras.

We tried to navigate this lightly. Our main goal was to stay within the
basic algebra Rd,0,1, since for 3D Euclidean geometry that is 4D and matches
current GPUs well. We showed how the Hodge dual is a workable form of
duality under these constraints, even leading to a compact and cheap join

formula eq.(133).
A clever choice of basis elements for PGA, in which all signs change in

blocks of four, enables fast computation with duals (see Table 4).
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10 Performance Considerations

(This section was contributed by Steven De Keninck.)

10.1 PGA versus CGA

Having to take the dual view (with the vectors representing planes, not
points) and possessing a non-invertible pseudoscalar: these were both hur-
dles that kept the GA community from accepting PGA for about 10 years.
As we have tried to show in this replacement Chapter 11 for [1], the former
is only a conceptual issue, and the latter hardly surfaces (and where it does,
it is not a programming issue, just one of algebraic purity). CGA still has
the advantage over PGA of representing round elements like spheres, circles
and tangents as blades. But traditional graphics algorithms use the flats
(planes, lines, directions), and for them PGA is a sufficiently natural envi-
ronment. We have tried to convince the practitioners to use CGA for years;
only in robotics, where the sphere computations really simplify the inverse
kinematics, has CGA gained some ground.

If flats are indeed enough in your application, the ‘1-up’ PGA is your alge-
bra. And then there is a significant advantage in computational performance
in not using the ‘2-up’ CGA.

• For the geometric product of a full 3D PGA multivector (from R3,0,1),
192 multiplications and 176 additions are required.

• For the geometric product of a full 3D CGA multivector (from R4,1),
1024 multiplications and 992 additions are required.

This makes PGA more than 5 times faster compared to CGA, for a general
geometric product. But we should say that one rarely needs to compute a full
geometric product of general multivectors, since sensible geometric elements
are blades or versors; still, it indicates that there is a significant difference.

10.2 PGA versus LA

However, for applications in computer graphics, the crucial comparison to
make is between PGA and the classic matrix/vector techniques from lin-
ear algebra (LA). PGA builds on the representations (homogeneous points,
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Plücker coordinates, linear equations, (dual-) quaternions) already widely
used in the computer graphics community. As a result, adopting existing
frameworks to incorporate PGA is often a trivial task, and in many cases
PGA can coexist with classical techniques.

The advantage of embedding in PGA, for even in the highly optimized
graphics space, is that extra performance gains can be made.

• For the composition of Euclidean motions, the classic 4 × 4 matrix
product (requiring 64 multiplications, 48 additions and 16 floats of
storage) can be replaced by the geometric product between motors
(requiring only 48 multiplications, 40 additions and 8 floats of storage).

• Additionally, PGA motors offer improved numerical stability, eliminat-
ing the need for re-orthogonalization or re-unitarization, and provide
a covariant approach - thus removing costly calculations of matrix in-
verses or adjoints.

Other advantages of the general GA formalism apply equally to PGA, with
the availability of exception-free incidence relations and well-defined duality
of elements and their relationships further reducing code complexity.

10.3 Memory Layout

A carefully selected memory layout allows a perfect split in 4 blocks of 4
floats that matches today’s practices (and GPU hardware) exactly.

The trick is to organize the basis elements not simply by grade (from
scalar, via vectors, bivectors and trivectors to the 4-dimensional pseudoscalar),
but to interleave the scalar and pseudoscalar as in Table 5. When we do
so, the coordinate aspects neatly coincide with geometrical concepts. This
layout not only arranges the basic objects (plane, line, point) in blocks of
consecutive coordinates, but also does so for the versors of rotation and rigid
body motion. Translation, which officially requires a basis {1, e01, e02, e03}
does not quite follow this pattern. But since the scalar part of a translation
versor is always equal to 1 anyway, we only need to pick up the other three
elements to construct that versor – and those are nicely consecutive in the
layout.

We easily recognize the more classical representations in the resulting
scheme. Points and planes are represented homogeneously with four floats,
while lines are stored using what are effectively Plücker coordinates. Both
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vector scalar E-bivector V-bivector pseudo trivector
(4) (1) (3) (3) (1) (4)

e0, e1, e2, e3 1 e23, e31, e12 e01, e02, e03 e0123 e123, e032, e013, e021

plane line or screw point
rotator translator

(unit quaternion)
motor

(unit biquaternion)

Table 5: The components of the elements of 3D PGA can be stored as dif-
ferent kinds of blades, often in quadruples. If done in a smart arrangement,
this can use 4D GPU hardware for graphics efficiently. E denotes Euclidean
elements; V denotes elements on the vanishing plane. (Actually, the trans-
lator is placed here for symmetry, its scalar is always 1 so does not need to
be stored, and we set its pseudoscalar to zero. With this artificial symmetry
comes efficiency.)

quaternions and dual quaternions are using ‘classic’ memory layouts, and
hence are available from PGA elements without any conversion - simply
point to the correct starting floats.

If additionally the actual basis elements are chosen smartly, so that com-
plement duality sign changes are ‘per grade’ as in Table 4 (which has the
same signs per block), this provides a perfect match to current practice in
computer graphics. (If by contrast we had chosen for the trivector basis the
seemingly natural {e123, e023, e031, e012}, for instance, not all would have the
same sign under the complement duality of Table 4, and this would take
extra operations to fix.)

10.4 Speed-up of Sandwich-like Products

Many of the formulas presented in this text are sandwiching-like products
with a repeating factor: geometric transformations are X 7→ V X V −1, the
projection is X 7→ (X ·A)/A and the rejection x 7→ (x∧A)/A (which can be
written in sandwiching form modulo some signs, see Exercise 12.2:9). These
products are all structure-preserving (transforming points to points, lines
to lines, etc.), and the repetition of a factor means that they are perfect
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candidates for symbolic optimization.
Optimizing these sandwiches can often provide substantial gains (for ex-

ample, the projection of a line on a point (L · P )/P can be performed using
just 29 multiplications compared to 42 if done fully). High performance
implementations [18] of PGA typically include shortcuts for these common
sandwiching constructions.

10.5 Inverses

Graphics engineers to whom PGA (and GA in general) is new may be taken
aback by the large number of divisions typically used in these algebras, no-
tably in the sandwiching products above. However, in many cases multivector
inverses are not explicitly needed.

Even versors constructed directly as the exponential of their invariant
bivectors are of the form exp(−B/2). For this kind of versor (aka a rotor),

V Ṽ = 1. Therefore their inverse is exactly equal to their reverse, which is
trivial to compute: just a minus sign for the parts of grade 2 and 3.

As we already indicated in Section 6.1, for the blades and general versors,
the inverse is defined as A−1 = Ã/(AÃ). In PGA, the denominator is always
positive (for elements for which the inverse exists at all). So if you are
interested in geometry modulo a positive scaling factor, you are allowed to
replace the inverse by the reverse. You then still retain the benefit of oriented
computations.

For example, the projection formula (X ·A)A−1. For a normalized blade,

this is equivalent to (X · A) Ã which only requires the reversion operator
(swapping signs of grades 2 and 3). For non-normalized blades, we can do
the same: replace the inversion by the reversion, and you may draw the result,
or compute on with it, or decide to normalize it before further computations
(some interpretations depend on normalization).

Normalized points, (proper) lines and planes in PGA are their own in-
verses (up to a grade-dependent sign: − for point and line, + for plane). As
such, these inversions or divisions in our cheat sheet of Table 2 do not imply
the performance penalty they would in the matrix/vector approach.
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11 To PGA! (and Beyond...)

This text intends to convey the basic structure of PGA, to help you with
accepting its rather unusual nature (yes, points are trivectors!), and to show
how things you already use (but that are somewhat extraneous to the basic
LA approach, like dual quaternions) are actually fully integrated into PGA.

I hope that this write-up encourages you to try this out for yourself. It
does work; now make it work for you. Once you are hooked, there is no going
back; rather, you may decide to even go beyond PGA to CGA, which does
for conformal transformations what PGA did for Euclidean motions. The
modelling principles are similar, and described in Chapters 14-16 of [1]; it
is just that in CGA, spheres are the vectors, and then the rest follows. In
this context, planes are special spheres (with infinite radius), so in Computer
Science terms CGA is a fully backwards compatible extension of PGA (see
also [5]). Mathematically, PGA is a subalgebra of CGA.

But for now, start with PGA, and enjoy!
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12 Exercises

12.1 Drills

1. Show that e ∧ e1 + e2 ∧ e3 is a 2-vector, but not a 2-blade. Try to
factorize it by the outer product!

2. Hail Caesar! Compute A ∨ e.

3. Show that meeting the celestial sphere (going to heaven?) reduces you
to a null object: (A ∧ e)2 = 0 for all A.

4. Joining the universe will not affect you: show that I ∨A = A = A∨I.
Apparently, you were already part of it...

12.2 Structural Exercises

1. Reciprocal Frames (with Section 2.2)
In some of our equations, combinations of vectors occur that are most
easily interpreted if we are aware of reciprocal frames. Let us take a
side view of the two intersecting planes, used in Section 2.2 to generate
the line representation, see Figure 12.

The location of the intersection of the two lines can be found by the
vertex of a parallelogram with sides parallel to the lines, and hence in
directions perpendicular to n1 and n2. If we construct two vectors nr1
and nr2 which satisfy n1 · nr1 = 1 and n2 · nr2 = 1 and n1 · nr2 = 0 and
n2 · nr1 = 0, then we can use these as a new basis for those directions
in the plane spanned by n1 and n2. These equations show that nr1 is
perpendicular to n2, with a sensibly chosen direction and length by its
relationship to n1, and conversely for nr2, see Figure 12.

(a) Solve these equations, i.e., give expressions for nr1 and nr2.

(b) Establish the reciprocal frame relationships: the nri -coordinate of
a point x is x ·ni (and vice versa, the ni-coordinate of x is x ·nri ).

(c) Show how the reciprocal frame vectors indeed explain the posi-
tional term of the line representation eq.(8). Note that this term
arose automatically, so you do not actually need to know the re-
ciprocal frame; it happens anyway.
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Figure 12: The intersection line of two planes encoded by the reciprocal frame
of their normal vectors, as seen head on in the plane spanned by their normal
vectors n1 and n2. The intersection point p is most easily seen as the sum
of weighted reciprocal vectors p = δ1n

r
1 + δ2n

r
2.

Solution: Using geometric algebra, we can easily find expressions for
the vectors nri . We compute nr1 (n1 ∧ n2) = nr1 · (n1 ∧ n2) = (nr1 ·
n1) n2 − (nr1 · n2) n1 = n2, so that nr1 = n2/(n1 ∧ n2). Similarly nr2 =
n1/(n2∧n1) = −n1/(n1∧n2). You can find more about these reciprocal
frames in Section 3.8 of [1], such as the general form in d dimensions.
For the intersection point we obtain

p = (p · n1) nr1 + (p · n2)n
r
2 = δ1n

r
1 + δ2n

r
2. (135)

We can also see this from similar triangles indicated in the figure, and
recognize these terms in eq.(8). Since Figure 12 is a perpendicular cross
section of the 3D situation, p is indeed the orthogonal support vector
of the resulting line (which sticks orthogonally out of the page), as we
mentioned in the main text.

2. Simplification of Expressions (with Section 2.5)
Check why the following is allowed in rewriting the point representation
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of eq.(13):

p · I3 = (p1e1 + p2e2 + p3e3) · (e1e2e3)

= p1e2e3 − p2e1e3 + p3e1e2

= p1e23 + p2e31 + p3e12. (136)

And for A purely Euclidean: eA = e ·A + e ∧A = 0 + e ∧A.

3. Point Representation in d-dimensional Space (with Section 2.5)

Show that in d dimensions, the point representation is P = (1 + ep) Id,
by performing the meet of d well-chosen planes. Mind the signs!

Solution:

P =
d∧
i=1

(ei + (p · ei)e)

= Id +
d∑
i=1

e1 ∧ e2 ∧ · · · (p · ei)e ∧ · · · ∧ ed

= Id + e ∧
d∑
i=1

(−1)ie1 ∧ e2 ∧ · · · (p · ei) ∧ · · · ∧ ed

= Id + e ∧ (p · Id)
= (1 + ep) Id. (137)

This can be interpreted as a prefix translation operator applied to
the point at the origin represented by the d-blade Id. It is in prefix
form since ep anti-commutes with Id in any dimension: eId = Îde and
pId = −Îdp. Therefore the translation versor sandwiching product
can be rewritten in a one-sided manner: (1 + ep/2) Id(1 − ep/2) =
(1 + ep/2)2 Id = (1 + ep) Id.

4. Classical Homogeneous Point Representation (Section 2.5)
Show that balancing the algebra with the extra vector er reciprocal to
e (so that e · er = 1), and then doing the dualization as a dot product
with the reciprocal pseudoscalar Ir ≡ e3 ∧ e2 ∧ e1 ∧ er, leads to a fairly
recognizable form of the usual point representation p in homogeneous
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coordinates, which would allow us to have p ·n = 0 as the homogeneous
representation of a plane n.

Solution: p ≡ P cIr = −p + er and p · n = −p · n + δ. Apart from a
sign difference, this is what you get in homogeneous coordinates.

5. The Common Factor Axiom (with Section 3.1)
Using the scalar product ∗, in Chapter 3 of [1] we define the left con-
traction c from the outer product ∧ by

(X ∧ A) ∗B ≡ X ∗ (AcB), for all X. (138)

It is really important to use the contraction rather than a general inner
product for this exercise, not least because of its properties on scalars:
1cB = B (rather than 0, as in some other inner products, see [19]). We
can use this relationship to derive the Common Factor Axiom (CFA)
for blades:

(B ∧ C) ∨ (A ∧B) = (A ∧B ∧ C) ∨B. (139)

This purposely has a swap of arguments relative to a similar axiom in
[8], to make our join have a more pleasant semantics in the connection
of points: for us, P ∨Q is the line from P to Q. (It makes no difference
whether we put B to the left or the right on the right hand side of this
equation, see Exercise 12.1.4.)

Let grade(A ∧B ∧ C) = n, and take duality ( )∗ in that n-D space.
Then we will find that the demand to have no extraneous argument-
dependent signs in the CFA we should define it as:

(X ∨ Y )∗ ≡ X∗ ∧ Y ∗, (140)

or equivalently (avoiding the undualization which is so awkward to
define in degenerate spaces):

X ∨ Y ≡ X∗cY. (141)

Verify the following derivation of the CFA! (Remember that the scalar
product is only non-zero if its two arguments have the same grade, and
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the join we compute has the grade of B; therefore so does X.)

X ∗
(
(B ∧ C) ∨ (A ∧B)

)
= X ∗

(
(B ∧ C)∗c(A ∧B)

)
=

(
X ∧ (B ∧ C)∗

)
∗ (A ∧B)

= (A ∧B) ∗
(
X ∧ (B ∧ C)∗

)
= (B ∧ A) ∗

(
Xc(B ∧ C)

)∗
(−1)ab

= B ∗
(
Ac
(
Xc(B ∧ C)

)∗)
(−1)ab

= B ∗
(
A ∧

(
Xc(B ∧ C)

))∗
(−1)ab

= B ∗
((
Xc(B ∧ C)

)
∧ A

)∗
(−1)a(b+c)

= B ∗
((
Xc(B ∧ C)

)
c(A∗)

)
(−1)a(b+c)

=
(
B ∧

(
Xc(B ∧ C)

))
∗ (A∗) (−1)a(b+c)

!
=

(
B ∧ (XcB) ∧ C

)
∗ (A∗) (−1)a(b+c)

= (XcB)
(

(B ∧ C) ∗ (A∗)
)

(−1)a(b+c)

= (X ∗B)
(

(B ∧ C)c(A∗)
)

(−1)a(b+c)

= (X ∗B) (B ∧ C ∧ A)∗ (−1)a(b+c)

= X ∗
(
(A ∧B ∧ C)∗cB

)
= X ∗

(
B ∨ (A ∧B ∧ C)

)
Hint: In the last few steps (after

!
=), it is important to recognize which

elements are scalars and pseudoscalars, and creatively replace products
to rewrite equivalent expressions for those. Note that the inverse of
the dual is not required, so we should be able to make this work in the
degenerate PGA (with some carefully defined duality). We do so in
Section 3 of the main text.

6. Bladeness Verification (with Section 5.6)
Prove that L and LI of eq.(69) indeed are blades, by explicitly com-
puting L ∧ L and (LI) ∧ (LI). Start with the latter, it is easier.

Solution: For the latter that is a straightforward use of the duality

93



properties of inner and outer product :

(LI) ∧ (LI) ∝ (B I) ∧ (B I)

=
(
B I) ·B

)
I

=
(
B · (B I)

)
I

= (B ∧B) I2 = 0. (142)

The former is more involved. Using the symmetry of the outer product
for blades, and the fact that (B ∧B)2 = 0:

L ∧ L ∝
(
B (B ·B)− 1

2
B(B ∧B)

)
∧
(
B (B ·B)− 1

2
B(B ∧B)

)
= (B ∧B) (B ·B)2 + 1

2

(
B (B ∧B)

)
∧
(
B (B ∧B)

)
−B ∧

(
B (B ∧B)

)
(B ·B)

= (B ∧B) (B ·B)2 + 1
2
(B ∧B)3 − (B ·B)2 (B ∧B)

= 0. (143)

7. The Commutator of Lines (with Section 5.6)
The commutator product of two 2-blades is in general a 2-vector.
Therefore the commutator of two lines need not be a line. Compute it,
and specify under what conditions it is a line.

Solution: (We use M̃ to avoid some annoying signs, but this is not
essential.)

L× M̃ =
(
uI3 + e(p · uI3)

)
×
(
vI3 + e(q · vI3)

)∼
= u ∧ v + e

(
u · (q ∧ v)− v · (p ∧ u)

)
(144)

Note that this is in general not a blade, for its outer square is not zero:

(L× M̃) ∧ (L× M̃) = (u · v) e ∧ u ∧ v ∧ (p− q)

= (u · v) e ∧ u ∧ v ∧ d. (145)

Only when the lines have a point in common (which may be a vanishing
point), or when the lines have orthogonal directions, this does equal
zero.

8. Repositioning by Orthogonal Projection (with Section 5.3)
Apply the projection eq.(59) on a plane n, to show its correctness in
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that case. Then reason why that implies that it will also be correct
for all geometric primitives constructed from plane by means of meet
operations.

Solution:

(n ·X)/X =
(
n · ((1 + ex)I3)

)
/
(
(1 + ex)I3

)
=

(
n ∧ (1 + ex)

)
(1− ex)

= (n− en ∧ x) (1− ex)

= n− en ∧ x + enx

= n + e (n · x). (146)

And now think ‘outermorphism’...

9. Contraction Sandwiching (with Section 5.3)
We saw in Section 5.3 how to project an element onto a point, to
produce a positioning operation. You can rewrite this operation as a
‘contraction sandwich’, using the left and right contraction (to show the
analogy with geometric product sandwiching when applying a versor),
but this involves some extra signs. We have to use the contraction in
this exercise to make the projection universally correct in its geomet-
rical meaning, even for scalars and pseudoscalars. Show that:

Tx[Ak] = (AkcX)cX−1 = (−1)k(d+1)XbAkcX−1 (147)

The two contractions in the dot sandwiching can be performed in either
order.

Solution: the sign difference derives from (see Section 3.4 of [1]):

XmbYn = (ỸncX̃m)
∼

= (−1)n(n−1)/2+m(m−1)/2+(m−n)(m−n−1)/2XmcYn
= (−1)(m+1)nXmcYn. (148)

While the dot sandwich is an interesting structural rewriting, reminis-
cent of versor sandwiching, the projection formulation is more easily
remembered (it avoids the awkward sign factor). Also, it is more obvi-
ously idempotent.
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10. Translator as a Ratio of Points (with Section 6.3)
Show that the ratio of two similarly weighted points Q and P gives a
translator over twice their distance.

Solution:
(
(1+eq)I3

)
/
(
(1+ep)I3

)
= (1+eq)(1−ep) = 1+e(q−p).

The actual translator is then the square root of this, which is 1 + e(q−
p)/2.

11. Exact Line Correspondence Algorithm (with Section 6.8)
Design an algorithm using the basic ideas of Section 6.8 to find the
motor that aligns the minimum number of line correspondences in 3D.
Your first step aligns the first set of lines; what are the remaining de-
grees of freedom? How would you construct the next ratio of primitives
to disambiguate those while preserving the first alignment?

12. Hodge Dual Join in d Dimensions (with Section 9.2)
Compute the sign in a PGA dor d-dimensional space (so Rd,0,1) relating
A ∨B to ?(?A ∧ ?B), to generalize eq.(133).

Solution: Let the pseudoscalar be e Id. We employ the Hodge du-
alization equations eq.(126) and eq.(127). Then we compute the terms
involving PA, of grade (a− 1), and PB, of grade (b− 1), in ?A and ?B.
They are

PA Id (−1)(a−1)(a−2)/2 and PB Id (−1)(b−1)(b−2)/2. (149)

These are wedged together to produce a Euclidean element, and then
the last Hodge dual produces a term of the form (modulo sign)

e
(
(PAId) ∧ (PBId)

)
Id = e

(
PA

? ∧PB
?
)
Id. (150)

which according to eq.(34) should be without a nett sign.. When we
compute its actual sign after the final Hodge, we find that it equals the
parity of d + (a − 1)(b − 1). The other terms in the join turn out to
be similar in sign, so we have found in Rd,0,1:

A ∨B = ?(?A ∧ ?B) (−1)d+(a−1)(b−1)

= ?(?B ∧ ?A) (−1)d (a+b) (151)

= ?−1(?B ∧ ?A). (152)
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By swapping the order of the arguments we have absorbed the signs in
a more memorable manner. The final rewrite makes the result indepen-
dent of dimension, by using the Hodge undualization of eq.(132). If you
plan to work only in 3D, you could use eq.(151) in the odd-dimensional

form A ∨B = ?(?B̂ ∧ ?Â).
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Rd,0,1, 7
c (left) contraction, 92̂ grade involution, 28˜ reversion, 18
? Hodge dual, 80

area, 34
aspect

positional, 15, 27
tangential, 15, 27

bivector, 45
split, 46, 47, 70

blade, 14
sums of, 45

Cartan-Dieudonné, 8, 50, 58
Cayley table, 32
CFA, 25
CGA, 6, 84, 88
Chasles’theorem, 58, 67
Chasles’ theorem, 50
chirality, 72, 77
Common Factor Axiom, 25, 92
contraction, 95
Cramer’s rule, 23

decomposition, 39, 47
distance (oriented), 20
dual

complement, 79
Hodge ?, 33, 80
Hodge undual ?−1, 81
space, 79

example

bivector split, 47
chirality, 77
decomposition, 44
join, 29, 83
linear equations, 23
motor reconstruction, 62
motors, 60
norm usage, 34
tricycle, 67
vanishing plane, 44
wedge game, 23

exponentiation, 65

ganja, 10, 63

Hodge dual ?, 80

length (contour), 34
line

PGA 2-blade, 15
equation, 21
vanishing, 17, 46, 58, 66, 67

linear algebra, 84
solving equations, 23

motor, 58
interpolation, 60
logarithm, 71
screw, 67
simple, 60
square root, 59
tricycle, 67

norm, 32
ideal, 33
vanishing, 33
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null vector, 7, 12

ordering, 72
outermophism, 41

Plücker coordinates, 17, 29
plane

PGA vector, 12
bundle, 36, 37
homogeneous equation, 11
ideal, 13
pencil, 43
through point, 20
vanishing, 13
vector equation, 11

point
PGA trivector, 18, 36, 37
centroid, 22
on plane, 20
reflection, 57
vanishing, 19, 29, 68

product
commutator, 45, 94
contraction, 92
dot, 13
geometric, 40
join, 25, 27, 28, 83
outer, 14
regressive, 25, 27
sandwich, 51, 65, 86
versor, 65

projection, 37
pseudoscalar

PGA, 20, 27
Euclidean, 16

quaternion, 56, 64, 86
dual, 50, 56, 59, 86

reciprocal frame, 15, 27, 30, 89, 90
reflection, 50, 52
rejection, 39
repositioning, 42, 94
rotation, 56
rotor, 65

sandwiching, 51, 95
screw

bivector, 59, 67
motion, 50

translation, 55, 96

vector
direction, 19
normal, 75, 76

versor, 8, 51
even, 65

volume, 34
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