// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
// Copyright 2007, Daniel Fontijne, University of Amsterdam -- fontijne@science.uva.nl
#include <math.h>
#include <libgasandbox/timing.h>
/*
This file contains all the field evaluators
that came with the original matlab code
and some extra simple ones
*/
#include "fields.h"
extern float g_dx;
extern float g_dy;
extern float g_dz;
extern float g_omega;
extern float g_gamma;
extern float g_Rcore;
double g_fieldsCurrentTime = 0;
vector &vortex(const vector& p, vector& v) {
float r;
r = sqrtf(g_dx*g_dx + g_dy*g_dy + g_dz*g_dz);
vector axis(vector_e1_e2_e3, g_dx/r,g_dy/r,g_dz/r);
v = g_omega*axis+g_gamma*(((p^axis)*inverse(axis))*(axis*I3i));
return v;
}
/* Vortex field with varying perp component that may put a point singularity
in the field */
vector &vortexS(const vector &p, vector &v) {
float r;
r = sqrtf(g_dx*g_dx + g_dy*g_dy + g_dz*g_dz);
vector axis(vector_e1_e2_e3, g_dx/r,g_dy/r,g_dz/r);
v = g_omega*((p<<axis)*inverse(axis))+g_gamma*(((p^axis)*inverse(axis))*(axis*I3i));
return v;
}
/* simple z-axis aligned vortex field */
vector &vortexA(const vector &p, vector &v) {
float r;
r = sqrtf(p.e1()*p.e1() + p.e2()*p.e2());
v.set(vector_e1_e2_e3,-p.e2()/r,p.e1()/r,g_Rcore);
return v;
}
/* vortex field from paper */
vector &vortexO(const vector &p, vector &v) {
float r;
float z;
r = sqrtf(p.e1()*p.e1() + p.e2()*p.e2());
z = (float)(g_omega*(1.-g_Rcore/r));
v.set(vector_e1_e2_e3,
-g_gamma*p.e2()/r - g_omega*p.e3()*p.e1()/(r*r),
g_gamma*p.e1()/r - g_omega*p.e3()*p.e2()/(r*r),
z);
return v;
}
vector &point3(const vector &p, vector &v) {
v.set(vector_e1_e2_e3,
-p.e1(),
-p.e2(),
-p.e3());
return v;
}
vector &line3(const vector &p, vector &v) {
v.set(vector_e1_e2_e3,
2.0f * (p.e1()),
2.0f * (p.e2()),
0);
return v;
}
vector &testFunc3(const vector &p, vector &v) {
float c[3] = {p.e1() + 0.05f, p.e2() + 0.05f, p.e3() + 0.05f};
v.set(vector_e1_e2_e3,
0,
0,
5.0f * (p.e1() * p.e1() + p.e2() * p.e2()));
return v;
}
vector &testFunc4(const vector &p, vector &v) {
v.set(vector_e1_e2_e3,
3*p.e1()*p.e1()*p.e2()*p.e2()*p.e2()*p.e3()*p.e3(),
3*p.e1()*p.e1()*p.e1()*p.e2()*p.e2()*p.e3()*p.e3(),
2*p.e1()*p.e1()*p.e1()*p.e2()*p.e2()*p.e2()*p.e3());
return v;
}
vector &testFunc5(const vector &p, vector &v) {
v.set(vector_e1_e2_e3,
3*p.e1()*p.e1(),
3*p.e2()*p.e2(),
2*p.e3());
return v;
}
vector &testFunc6(const vector &p, vector &v) {
v.set(vector_e1_e2_e3,
3*p.e1()*p.e1()+2*p.e1(),
3*p.e2()*p.e2(),
0);
return v;
}
vector &testFunc7(const vector &p, vector &v) {
v.set(vector_e1_e2_e3,
3*p.e1()*p.e1()*p.e2()*p.e2()*p.e2(),
3*p.e1()*p.e1()*p.e1()*p.e2()*p.e2(),
0);
return v;
}
vector &testFunc8(const vector &p, vector &v) {
bivector ii = _bivector(e1 ^ e2);
rotor z = _rotor(p.e1()+p.e2()*ii);
rotor f = _rotor(z*z * inverse(z + 2) * inverse(z - 0.8f));
v.set(vector_e1_e2_e3, _Float(f), f.e1e2(), 0.0f);
return v;
}
vector &testFunc9(const vector &p, vector &v) {
bivector ii = _bivector(e1 ^ e2);
rotor z = _rotor(p.e1()+p.e2()*ii);
rotor f = _rotor(inverse(z));
v.set(vector_e1_e2_e3, _Float(f), f.e1e2(), 0.0f);
return v;
}
vector &testFunc10(const vector &p, vector &v) {
v.set(vector_e1_e2_e3,
3*p.e1()*p.e1(),
3*p.e2()*p.e2(),
3*p.e3()*p.e3());
return v;
}
vector &testFunc11(const vector &p, vector &v) {
v.set(vector_e1_e2_e3,
4*p.e1()*p.e1()*p.e1(),
4*p.e2()*p.e2()*p.e2(),
4*p.e3()*p.e3()*p.e3());
return v;
}
vector &testFunc12(const vector &p, vector &v) {
v.set(vector_e1_e2_e3,
4*p.e1()*(p.e1()*p.e1()+p.e2()*p.e2()-p.e3()),
4*p.e2()*(p.e1()*p.e1()+p.e2()*p.e2()-p.e3()),
-2*(p.e1()*p.e1()+p.e2()*p.e2()-p.e3()));
return v;
}
// ((p.e1()-0.5)*(p.e1()-0.5)+p.e2()*p.e2()-1)^2*(p.e1()*p.e1()+p.e2()*p.e2()+p.e3()*p.e3()-1)^2
vector &testFunc13(const vector &p, vector &v) {
float A =(float)((p.e1()-0.5)*(p.e1()-0.5)+p.e2()*p.e2()-1.0f);
float B = (float)(p.e1()*p.e1()+p.e2()*p.e2()+p.e3()*p.e3()-1.0f);
v.set(vector_e1_e2_e3,
4.0f*(p.e1()-0.5f)*A*B*B + 4*p.e1()*A*A*B,
4.0f*p.e2()*A*B*B + 4*p.e2()*A*A*B,
4.0f*p.e3()*A*A*B);
return v;
}
// ((p.e1()-0.5)*(p.e1()-0.5)+p.e2()*p.e2()-1)^2 + (p.e1()*p.e1()+p.e2()*p.e2()+p.e3()*p.e3()-1)^2
vector &testFunc14(const vector &p, vector &v) {
float A =((p.e1()-0.5f)*(p.e1()-0.5f)+p.e2()*p.e2()-1.0f);
float B = (p.e1()*p.e1()+p.e2()*p.e2()+p.e3()*p.e3()-1.0f);
v.set(vector_e1_e2_e3,
4.0f*(p.e1()-0.5f)*A + 4.0f*p.e1()*B,
4.0f*p.e2()*A + 4.0f*p.e2()*B,
4.0f*p.e3()*B);
return v;
}
// helix - 1 / [(x-cos(z))^2 + (y-sin(z))^2] = 1/A
vector &testFunc15(const vector &p, vector &v) {
float cz = cos(p.e3()*2.0f); float sz = sin(p.e3()*2.0f);
float A = (p.e1()-cz)*(p.e1()-cz) + (p.e2()-sz)*(p.e2()-sz);
v.set(vector_e1_e2_e3,
-2.0f*(p.e1()-cz)/(A*A),
-2.0f*(p.e2()-sz)/(A*A),
-2.0f*(-(p.e1()-cz)*sz+(p.e2()-sz)*cz)/(A*A));
return v;
}
vector &testFunc16(const vector &p, vector &v) {
vector A = _vector(p.e1() * e1 + p.e2() * e2);
vector B = _vector(sqrtf(p.e1()*p.e1()+p.e2()*p.e2())*e1);
vector C = _vector(A * inverse(B) * A);
v.set(vector_e1_e2_e3, 2.0f*C.e1(), 2.0f*C.e2(), 0.0f);
return v;
}
vector &testFunc16a(const vector &p, vector &v) {
vector A = _vector(p.e1()*e1 + p.e2()* e2);
vector B = _vector(sqrtf(p.e1()*p.e1()+p.e2()*p.e2())*e1);
vector C = _vector(A * inverse(B) * A);
v.set(vector_e1_e2_e3, 2*C.e1(), 2*C.e2(), 2*p.e3());
if ( 0 && fabs(C.e1())+fabs(C.e2())+fabs(C.e3()) < 1e-1 ) {
printf("*** p %g %g %g, cc %g %g %g\n",p.e1(),p.e2(),p.e3(), C.e1(), C.e2(), C.e3());
printf(" A = %g e1 + %g e2, B = %g e1\n",
p.e1(), p.e2(), sqrtf(p.e1()*p.e1()+p.e2()*p.e2()));
}
return v;
}
// x^3/3 - xy^2 + z^2
vector &testFunc17(const vector &p, vector &v) {
v.set(vector_e1_e2_e3,
p.e1()*p.e1()-p.e2()*p.e2(),
-2*p.e1()*p.e2(),
2*p.e3());
return v;
}
// x^3/3 - xy^2
vector &testFunc18(const vector &p, vector &v) {
v.set(vector_e1_e2_e3,
p.e1()*p.e1()-p.e2()*p.e2(),
-2*p.e1()*p.e2(),
0.0f);
return v;
}
vector &helix3(const vector &p, vector &v) {
v.set(vector_e1_e2_e3,
-p.e2(), p.e1(),
(p.e1() * p.e1() + p.e2() * p.e2()) * p.e3());
return v;
}
vector &const3(const vector &p, vector &v) {
v.set(vector_e1_e2_e3, 1.0, 1.0, 1.0);
return v;
}
/*
function [vx,vy,vz]=circ3(x,y,z)
vx = 4*(x^2+y^2-1)*x*e1;
vy = 4*(x^2+y^2-1)*y*e2;
vz = 2*z*e3;
*/
vector &circ3(const vector &p, vector &v) {
// fastest method:
v.set(vector_e1_e2_e3,
4 * (p.e1() * p.e1() + p.e2() * p.e2() - 1) * p.e1(), // e1 coordinate
4 * (p.e1() * p.e1() + p.e2() * p.e2() - 1) * p.e2(), // e2 coordinate
2 * p.e3()); // e3 coordinates
/* less efficient alternative:
v = 4 * (p.e1() * p.e1() + p.e2() * p.e2() - 1) * p.e1() * e3ga::e1 +
4 * (p.e1() * p.e1() + p.e2() * p.e2() - 1) * p.e2() * e3ga::e2 +
2 * p.e3() * e3ga::e3;
*/
/* (even less efficient) alternative:
float e1c = p << e3ga::e1;
float e2c = p << e3ga::e2;
float e3c = p << e3ga::e3;
v = 4 * (e1c * e1c + e2c * e2c - 1) * e1c * e3ga::e1 +
4 * (e1c * e1c + e2c * e2c - 1) * e2c * e3ga::e2 +
2 * e3c * e3ga::e3;
*/
return v;
}
/*
function [vx,vy,vz]=sphere3(x,y,z)
vx = 4*(x^2+y^2+z^2-1)*x*e1;
vy = 4*(x^2+y^2+z^2-1)*y*e2;
vz = 4*(x^2+y^2+z^2-1)*z*e3;
*/
vector &sphere3(const vector &p, vector &v) {
// fastest method:
v.set(vector_e1_e2_e3,
4 * (p.e1() * p.e1() + p.e2() * p.e2() + p.e3() * p.e3() - 1) * p.e1(), // e1 coordinate
4 * (p.e1() * p.e1() + p.e2() * p.e2() + p.e3() * p.e3() - 1) * p.e2(), // e2 coordinate
4 * (p.e1() * p.e1() + p.e2() * p.e2() + p.e3() * p.e3() - 1) * p.e3()); // e3 coordinate
return v;
}
/*
function [vx,vy,vz]=eight2(x,y,z)
vx = (2*((x-1)^2+y^2-1)*x*(((x+1)^2+y^2-1)^2+z^2) + 2*((x+1)^2+y^2-1)*x*(((x-1)^2+y^2-1)^2+z^2))*e1;
vy = (2*((x-1)^2+y^2-1)*y*(((x+1)^2+y^2-1)^2+z^2) + 2*((x+1)^2+y^2-1)*y*(((x-1)^2+y^2-1)^2+z^2))*e2;
vz = (2*z*(((x+1)^2+y^2-1)^2+z^2)+2*z*(((x-1)^2+y^2-1)^2+z^2))*e3;
*/
vector &eight2(const vector &p, vector &v) {
// fastest method:
float tmp1, tmp2;
tmp1 = (p.e1()+1) * (p.e1()+1)+p.e2() * p.e2()-1;
tmp2 = (p.e1()-1) * (p.e1()-1)+p.e2() * p.e2()-1;
tmp1 *= 2.0f;
tmp2 *= 2.0f;
v.set(vector_e1_e2_e3,
(2*((p.e1()-1) * (p.e1()-1)+p.e2() * p.e2()-1)*p.e1()*(tmp1 +p.e3() * p.e3()) +
2*((p.e1()+1) * (p.e1()+1)+p.e2() * p.e2()-1)*p.e1()*(tmp2 +p.e3() * p.e3())),
(2*((p.e1()-1) * (p.e1()-1)+p.e2() * p.e2()-1)*p.e2()*(tmp1 +p.e3() * p.e3()) +
2*((p.e1()+1) * (p.e1()+1)+p.e2() * p.e2()-1)*p.e2()*(tmp2 +p.e3() * p.e3())),
(2*p.e3()*( tmp1+p.e3() * p.e3())+2*p.e3()*( tmp2+p.e3() * p.e3())));
return v;
}